De Rham 2-Cohomology of Real Flag Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathbb{F}_{\Theta }=G/P_{\Theta }$ be a flag manifold associated to a non-compact real simple Lie group $G$ and the parabolic subgroup $P_{\Theta }$. This is a closed subgroup of $G$ determined by a subset $\Theta $ of simple restricted roots of $\mathfrak{g}=\operatorname{Lie}(G)$. This paper computes the second de Rham cohomology group of $\mathbb{F}_\Theta$. We prove that it is zero in general, with some rare exceptions. When it is non-zero, we give a basis of $H^2(\mathbb{F}_\Theta,\mathbb{R})$ through the Weil construction of closed 2-forms as characteristic forms of principal fiber bundles. The starting point is the computation of the second homology group of $\mathbb{F}_{\Theta }$ with coefficients in a ring $R$.
Keywords: flag manifold, cellular homology, de Rham cohomology, characteristic classes.
Mots-clés : Schubert cell
@article{SIGMA_2019_15_a50,
     author = {Viviana del Barco and Luiz Antonio Barrera San Martin},
     title = {De {Rham} {2-Cohomology} of {Real} {Flag} {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a50/}
}
TY  - JOUR
AU  - Viviana del Barco
AU  - Luiz Antonio Barrera San Martin
TI  - De Rham 2-Cohomology of Real Flag Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a50/
LA  - en
ID  - SIGMA_2019_15_a50
ER  - 
%0 Journal Article
%A Viviana del Barco
%A Luiz Antonio Barrera San Martin
%T De Rham 2-Cohomology of Real Flag Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a50/
%G en
%F SIGMA_2019_15_a50
Viviana del Barco; Luiz Antonio Barrera San Martin. De Rham 2-Cohomology of Real Flag Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a50/

[1] Bott R., Samelson H., “Applications of the theory of Morse to symmetric spaces”, Amer. J. Math., 80 (1958), 964–1029 | DOI | MR

[2] Hatcher A., Algebraic topology, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[3] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, Inc., New York–London, 1978 | MR | Zbl

[4] Knapp A. W., Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser Boston, Inc., Boston, MA, 1996 | DOI | MR | Zbl

[5] Kobayashi S., Nomizu K., Foundations of differential geometry, v. II, Interscience Tracts in Pure and Applied Mathematics, 15, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1969 | MR

[6] Kocherlakota R. R., “Integral homology of real flag manifolds and loop spaces of symmetric spaces”, Adv. Math., 110 (1995), 1–46 | DOI | MR | Zbl

[7] Mare A.-L., “Equivariant cohomology of real flag manifolds”, Differential Geom. Appl., 24 (2006), 223–229, arXiv: math.DG/0404369 | DOI | MR | Zbl

[8] Rabelo L., San Martin L. A. B., Cellular homology of real flag manifolds, arXiv: 1810.00934

[9] San Martin L. A. B., Álgebras de Lie, 2nd ed., UNICAMP, Campinas, 2010

[10] Silva J. L., Rabelo L., Half-shifted Young diagrams and homology of real Grassmannians, arXiv: 1604.02177

[11] Warner G., Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, 188, Springer-Verlag, New York–Heidelberg, 1972 | DOI | MR | Zbl

[12] Wiggerman M., “The fundamental group of a real flag manifold”, Indag. Math. (N.S.), 9 (1998), 141–153 | DOI | MR | Zbl