On Direct Integral Expansion for Periodic Block-Operator Jacobi Matrices and Applications
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a functional model (direct integral expansion) and study the spectra of certain periodic block-operator Jacobi matrices, in particular, of general 2D partial difference operators of the second order. We obtain the upper bound, optimal in a sense, for the Lebesgue measure of their spectra. The examples of the operators for which there are several gaps in the spectrum are given.
Keywords: functional model, block Jacobi matrices, partial difference operators, periodicity, spectrum.
@article{SIGMA_2019_15_a49,
     author = {Leonid Golinskii and Anton Kutsenko},
     title = {On {Direct} {Integral} {Expansion} for {Periodic} {Block-Operator} {Jacobi} {Matrices} and {Applications}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a49/}
}
TY  - JOUR
AU  - Leonid Golinskii
AU  - Anton Kutsenko
TI  - On Direct Integral Expansion for Periodic Block-Operator Jacobi Matrices and Applications
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a49/
LA  - en
ID  - SIGMA_2019_15_a49
ER  - 
%0 Journal Article
%A Leonid Golinskii
%A Anton Kutsenko
%T On Direct Integral Expansion for Periodic Block-Operator Jacobi Matrices and Applications
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a49/
%G en
%F SIGMA_2019_15_a49
Leonid Golinskii; Anton Kutsenko. On Direct Integral Expansion for Periodic Block-Operator Jacobi Matrices and Applications. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a49/

[1] Berezans'kiĭ Ju. M., Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, 17, Amer. Math. Soc., Providence, R.I., 1968 | DOI | MR | Zbl

[2] Embree M., Fillman J., Spectra of discrete two-dimensional periodic Schrödinger operators with small potentials, arXiv: 1701.00863

[3] Fillman J., Han R., Discrete Bethe–Sommerfeld conjecture for triangular, square, and hexagonal lattices, arXiv: 1806.01988

[4] Gantmacher F. R., The theory of matrices, AMS Chelsea Publishing, Providence, RI, 1998 | MR

[5] Han R., Jitomirskaya S., “Discrete Bethe–Sommerfeld conjecture”, Comm. Math. Phys., 361 (2018), 205–216, arXiv: 1707.03482 | DOI | MR | Zbl

[6] Horn R. A., Johnson C. R., Matrix analysis, Cambridge University Press, Cambridge, 1985 | DOI | MR | Zbl

[7] Korotyaev E., Krasovsky I. V., “Spectral estimates for periodic Jacobi matrices”, Comm. Math. Phys., 234 (2003), 517–532, arXiv: math.SP/0205319 | DOI | MR | Zbl

[8] Krüger H., Periodic and limit-periodic discrete Schrödinger operators, arXiv: 1108.1584

[9] Kutsenko A. A., “Estimates of parameters for conformal mappings related to a periodic Jacobi matrix”, J. Math. Sci., 134 (2006), 2295–2304 | DOI | MR

[10] Kutsenko A. A., “On the measure of the spectrum of direct integrals”, Banach J. Math. Anal., 9 (2015), 1–8, arXiv: 1212.0235 | DOI | MR | Zbl

[11] Kutsenko A. A., “Sharp spectral estimates for periodic matrix-valued Jacobi operators”, Mathematical Technology of Networks, Springer Proc. Math. Stat., 128, Springer, Cham, 2015, 133–136, arXiv: 1007.5412 | DOI | MR | Zbl

[12] Simon B., Szegő's theorem and its descendants. Spectral theory for $L^2$ perturbations of orthogonal polynomials, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011 | MR