Mots-clés : monodromy.
@article{SIGMA_2019_15_a48,
author = {Kazuyuki Yagasaki and Shogo Yamanaka},
title = {Heteroclinic {Orbits} and {Nonintegrability} in {Two-Degree-of-Freedom} {Hamiltonian} {Systems} with {Saddle-Centers}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a48/}
}
TY - JOUR AU - Kazuyuki Yagasaki AU - Shogo Yamanaka TI - Heteroclinic Orbits and Nonintegrability in Two-Degree-of-Freedom Hamiltonian Systems with Saddle-Centers JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a48/ LA - en ID - SIGMA_2019_15_a48 ER -
%0 Journal Article %A Kazuyuki Yagasaki %A Shogo Yamanaka %T Heteroclinic Orbits and Nonintegrability in Two-Degree-of-Freedom Hamiltonian Systems with Saddle-Centers %J Symmetry, integrability and geometry: methods and applications %D 2019 %V 15 %U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a48/ %G en %F SIGMA_2019_15_a48
Kazuyuki Yagasaki; Shogo Yamanaka. Heteroclinic Orbits and Nonintegrability in Two-Degree-of-Freedom Hamiltonian Systems with Saddle-Centers. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a48/
[1] Ayoul M., Zung N. T., “Galoisian obstructions to non-Hamiltonian integrability”, C. R. Math. Acad. Sci. Paris, 348 (2010), 1323–1326, arXiv: 0901.4586 | DOI | MR | Zbl
[2] Bogoyavlenskij O. I., “Extended integrability and bi-Hamiltonian systems”, Comm. Math. Phys., 196 (1998), 19–51 | DOI | MR | Zbl
[3] Champneys A. R., Lord G. J., “Computation of homoclinic solutions to periodic orbits in a reduced water-wave problem”, Phys. D, 102 (1997), 101–124 | DOI | MR | Zbl
[4] Crespo T., Hajto Z., Algebraic groups and differential Galois theory, Graduate Studies in Mathematics, 122, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl
[5] Doedel E. J., Oldeman B. E., AUTO-07P: Continuation and bifurcation software for ordinary differential equations, , 2012 http://indy.cs.concordia.ca/auto
[6] Dovbysh S. A., “The splitting of separatrices, the branching of solutions and non-integrability in the problem of the motion of a spherical pendulum with an oscillating suspension point”, J. Appl. Math. Mech., 70 (2006), 42–55 | DOI | MR | Zbl
[7] Grotta Ragazzo C., “Nonintegrability of some Hamiltonian systems, scattering and analytic continuation”, Comm. Math. Phys., 166 (1994), 255–277 | DOI | MR | Zbl
[8] Guckenheimer J., Holmes P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, 42, Springer-Verlag, New York, 1983 | DOI | MR | Zbl
[9] Ilyashenko Y., Yakovenko S., Lectures on analytic differential equations, Graduate Studies in Mathematics, 86, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl
[10] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé A modern theory of special functions, Aspects of Mathematics, E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | DOI | MR
[11] Kozlov V. V., Symmetries, topology and resonances in Hamiltonian mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 31, Springer-Verlag, Berlin, 1996 | DOI | MR
[12] Lerman L. M., “Hamiltonian systems with loops of a separatrix of a saddle-center”, Selecta Math. Soviet., 10 (1991), 297–306 | MR
[13] Maciejewski A. J., Przybylska M., “Nonintegrability of the Suslov problem”, J. Math. Phys., 45 (2004), 1065–1078 | DOI | MR | Zbl
[14] Maciejewski A. J., Przybylska M., “Differential Galois approach to the non-integrability of the heavy top problem”, Ann. Fac. Sci. Toulouse Math., 14 (2005), 123–160, arXiv: math.DS/0404367 | DOI | MR | Zbl
[15] Melnikov V. K., “On the stability of a center for time-periodic perturbations”, Trans. Moscow Math. Soc., 12 (1963), 3–52 | MR | Zbl
[16] Meyer K. R., Offin D. C., Introduction to Hamiltonian dynamical systems and the $N$-body problem, Applied Mathematical Sciences, 90, 3rd ed., Springer, Cham, 2017 | DOI | MR | Zbl
[17] Morales-Ruiz J. J., Differential Galois theory and non-integrability of Hamiltonian systems, Progress in Mathematics, 179, Birkhäuser Verlag, Basel, 1999 | DOI | MR | Zbl
[18] Morales-Ruiz J. J., Peris J. M., “On a Galoisian approach to the splitting of separatrices”, Ann. Fac. Sci. Toulouse Math., 8 (1999), 125–141 | DOI | MR | Zbl
[19] Morales-Ruiz J. J., Ramis J. P., “Galoisian obstructions to integrability of Hamiltonian systems”, Methods Appl. Anal., 8 (2001), 33–95 | DOI | MR | Zbl
[20] Moser J., Stable and random motions in dynamical systems, Annals of Mathematics Studies, 77, Princeton University Press, Princeton, N.J., 1973 | MR | Zbl
[21] Poincaré H., New methods of celestial mechanics, v. I–III, AIP Press, New York, 1982 | MR
[22] Sakajo T., Yagasaki K., “Chaotic motion of the $N$-vortex problem on a sphere. I Saddle-centers in two-degree-of-freedom Hamiltonians”, J. Nonlinear Sci., 18 (2008), 485–525 | DOI | MR | Zbl
[23] Simó C. (ed.), Hamiltonian systems with three or more degrees of freedom, Nato Science Series C, 533, Kluwer, Dordrecht, 1999 | DOI | MR | Zbl
[24] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl
[25] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl
[26] Wiggins S., Introduction to applied nonlinear dynamical systems and chaos, Texts in Applied Mathematics, 2, 2nd ed., Springer-Verlag, New York, 2003 | DOI | MR | Zbl
[27] Yagasaki K., “Horseshoes in two-degree-of-freedom Hamiltonian systems with saddle-centers”, Arch. Ration. Mech. Anal., 154 (2000), 275–296 | DOI | MR | Zbl
[28] Yagasaki K., “Homoclinic and heteroclinic behavior in an infinite-degree-of-freedom Hamiltonian system: chaotic free vibrations of an undamped, buckled beam”, Phys. Lett. A, 285 (2001), 55–62 | DOI | MR | Zbl
[29] Yagasaki K., “Galoisian obstructions to integrability and Melnikov criteria for chaos in two-degree-of-freedom Hamiltonian systems with saddle centres”, Nonlinearity, 16 (2003), 2003–2012 | DOI | MR | Zbl
[30] Yagasaki K., Yamanaka S., “Nonintegrability of dynamical systems with homo- and heteroclinic orbits”, J. Differential Equations, 263 (2017), 1009–1027 | DOI | MR | Zbl
[31] Ziglin S. L., “Splitting of the separatrices and the nonexistence of first integrals in systems of differential equations of Hamiltonian type with two degrees of freedom”, Math. USSR Izvestiya, 31 (1988), 407–421 | DOI | MR | Zbl
[32] Ziglin S. L., “The absence of an additional real-analytic first integral in some problems of dynamics”, Funct. Anal. Appl., 31 (1997), 3–9 | DOI | MR | Zbl