Invariants in Separated Variables: Yang–Baxter, Entwining and Transfer Maps
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present the explicit form of a family of Liouville integrable maps in $3$ variables, the so-called triad family of maps and we propose a multi-field generalisation of the latter. We show that by imposing separability of variables to the invariants of this family of maps, the $H_{\rm I}$, $H_{\rm II}$ and $H_{\rm III}^A$ Yang–Baxter maps in general position of singularities emerge. Two different methods to obtain entwining Yang–Baxter maps are also presented. The outcomes of the first method are entwining maps associated with the $H_{\rm I}$, $H_{\rm II}$ and $H_{\rm III}^A$ Yang–Baxter maps, whereas by the second method we obtain non-periodic entwining maps associated with the whole $F$ and $H$-list of quadrirational Yang–Baxter maps. Finally, we show how the transfer maps associated with the $H$-list of Yang–Baxter maps can be considered as the $(k-1)$-iteration of some maps of simpler form. We refer to these maps as extended transfer maps and in turn they lead to $k$-point alternating recurrences which can be considered as alternating versions of some hierarchies of discrete Painlevé equations.
Keywords: discrete integrable systems, Yang–Baxter maps, entwining maps, transfer maps.
@article{SIGMA_2019_15_a47,
     author = {Pavlos Kassotakis},
     title = {Invariants in {Separated} {Variables:} {Yang{\textendash}Baxter,} {Entwining} and {Transfer} {Maps}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a47/}
}
TY  - JOUR
AU  - Pavlos Kassotakis
TI  - Invariants in Separated Variables: Yang–Baxter, Entwining and Transfer Maps
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a47/
LA  - en
ID  - SIGMA_2019_15_a47
ER  - 
%0 Journal Article
%A Pavlos Kassotakis
%T Invariants in Separated Variables: Yang–Baxter, Entwining and Transfer Maps
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a47/
%G en
%F SIGMA_2019_15_a47
Pavlos Kassotakis. Invariants in Separated Variables: Yang–Baxter, Entwining and Transfer Maps. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a47/

[1] Adler V. E., “Recuttings of polygons”, Funct. Anal. Appl., 27 (1993), 141–143 | DOI | MR | Zbl

[2] Adler V. E., “Bäcklund transformation for the Krichever–Novikov equation”, Int. Math. Res. Not., 1998 (1998), 1–4, arXiv: solv-int/9707015 | DOI | MR | Zbl

[3] Adler V. E., On a class of third order mappings with two rational invariants, arXiv: nlin.SI/0606056

[4] Adler V. E., Bobenko A. I., Suris Yu. B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543, arXiv: nlin.SI/0202024 | DOI | MR | Zbl

[5] Adler V. E., Bobenko A. I., Suris Yu. B., “Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings”, Comm. Anal. Geom., 12 (2004), 967–1007, arXiv: math.QA/0307009 | DOI | MR | Zbl

[6] Adler V. E., Shabat A. B., “Dressing chain for the acoustic spectral problem”, Theoret. and Math. Phys., 149 (2006), 1324–1337, arXiv: nlin.SI/0604008 | DOI | MR | Zbl

[7] Adler V. E., Yamilov R. I., “Explicit auto-transformations of integrable chains”, J. Phys. A: Math. Gen., 27 (1994), 477–492 | DOI | MR | Zbl

[8] Atkinson J., Idempotent biquadratics, Yang–Baxter maps and birational representations of Coxeter groups, arXiv: 1301.4613

[9] Atkinson J., Nieszporski M., “Multi-quadratic quad equations: integrable cases from a factorized-discriminant hypothesis”, Int. Math. Res. Not., 2014 (2014), 4215–4240, arXiv: 1204.0638 | DOI | MR | Zbl

[10] Atkinson J., Yamada Y., Quadrirational Yang–Baxter maps and the elliptic Cremona system, arXiv: 1804.01794

[11] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982 | MR | Zbl

[12] Bazhanov V. V., Sergeev S. M., “Yang–Baxter maps, discrete integrable equations and quantum groups”, Nuclear Phys. B, 926 (2018), 509–543, arXiv: 1501.06984 | DOI | MR | Zbl

[13] Boll R., “Classification of 3D consistent quad-equations”, J. Nonlinear Math. Phys., 18 (2011), 337–365, arXiv: 1009.4007 | DOI | MR | Zbl

[14] Bruschi M., Ragnisco O., Santini P. M., Tu G. Z., “Integrable symplectic maps”, Phys. D, 49 (1991), 273–294 | DOI | MR | Zbl

[15] Capel H. W., Sahadevan R., “A new family of four-dimensional symplectic and integrable mappings”, Phys. A, 289 (2001), 86–106 | DOI | MR | Zbl

[16] Cresswell C., Joshi N., “The discrete first, second and thirty-fourth Painlevé hierarchies”, J. Phys. A: Math. Gen., 32 (1999), 655–669 | DOI | MR | Zbl

[17] Dimakis A., Müller-Hoissen F., “Simplex and polygon equations”, SIGMA, 11 (2015), 042, 49 pp., arXiv: 1409.7855 | DOI | MR | Zbl

[18] Dimakis A., Müller-Hoissen F., “Matrix Kadomtsev–Petviashvili equation: tropical limit, Yang–Baxter and pentagon maps”, Theoret. and Math. Phys., 196 (2018), 1164–1173, arXiv: 1709.09848 | DOI | MR | Zbl

[19] Dimakis A., Müller-Hoissen F., “Matrix KP: tropical limit and Yang–Baxter maps”, Lett. Math. Phys., 109 (2019), 799–827, arXiv: 1708.05694 | DOI | MR | Zbl

[20] Doliwa A., “Non-commutative rational Yang–Baxter maps”, Lett. Math. Phys., 104 (2014), 299–309, arXiv: 1308.2824 | DOI | MR | Zbl

[21] Drinfel'd V. G., “On some unsolved problems in quantum group theory”, Quantum Groups (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 1–8 | DOI | MR

[22] Duistermaat J. J., Discrete integrable systems. QRT maps and elliptic surfaces, Springer Monographs in Mathematics, Springer, New York, 2010 | DOI | MR | Zbl

[23] Etingof P., “Geometric crystals and set-theoretical solutions to the quantum Yang–Baxter equation”, Comm. Algebra, 31 (2003), 1961–1973, arXiv: math.QA/0112278 | DOI | MR | Zbl

[24] Etingof P., Schedler T., Soloviev A., “Set-theoretical solutions to the quantum Yang–Baxter equation”, Duke Math. J., 100 (1999), 169–209, arXiv: math.QA/9801047 | DOI | MR | Zbl

[25] Evripidou C. A., Kassotakis P., Vanhaecke P., “Integrable deformations of the Bogoyavlenskij–Itoh Lotka–Volterra systems”, Regul. Chaotic Dyn., 22 (2017), 721–739, arXiv: 1709.06763 | DOI | MR | Zbl

[26] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl

[27] Fomin S., Zelevinsky A., “The Laurent phenomenon”, Adv. in Appl. Math., 28 (2002), 119–144, arXiv: math.CO/0104241 | DOI | MR | Zbl

[28] Fordy A. P., Hone A., “Discrete integrable systems and Poisson algebras from cluster maps”, Comm. Math. Phys., 325 (2014), 527–584, arXiv: 1207.6072 | DOI | MR | Zbl

[29] Fordy A. P., Kassotakis P., “Multidimensional maps of QRT type”, J. Phys. A: Math. Gen., 39 (2006), 10773–10786 | DOI | MR | Zbl

[30] Fordy A. P., Kassotakis P., “Integrable maps which preserve functions with symmetries”, J. Phys. A: Math. Theor., 46 (2013), 205201, 12 pp., arXiv: 1301.1927 | DOI | MR | Zbl

[31] Grahovski G. G., Konstantinou-Rizos S., Mikhailov A. V., “Grassmann extensions of Yang–Baxter maps”, J. Phys. A: Math. Theor., 49 (2016), 145202, 17 pp., arXiv: 1510.06913 | DOI | MR | Zbl

[32] Hay M., “Hierarchies of nonlinear integrable $q$-difference equations from series of Lax pairs”, J. Phys. A: Math. Theor., 40 (2007), 10457–10471 | DOI | MR | Zbl

[33] Hietarinta J., “Search for CAC-integrable homogeneous quadratic triplets of quad equations and their classification by BT and Lax”, J. Nonlinear Math. Phys., 26 (2019), 358–389, arXiv: 1806.08511 | DOI | MR | Zbl

[34] Hietarinta J., Joshi N., Nijhoff F. W., Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl

[35] Iatrou A., “Higher dimensional integrable mappings”, Phys. D, 179 (2003), 229–253 | DOI | MR | Zbl

[36] Jimbo M. (ed.), Yang–Baxter equation in integrable systems, Adv. Ser. Math. Phys., 10, World Sci. Publ., Teaneck, NJ, 1989 | DOI | MR

[37] Joshi N., Kassotakis P., Re-factorising a QRT map, arXiv: 1906.00501

[38] Joshi N., Nakazono N., Shi Y., “Lattice equations arising from discrete Painlevé systems. I $(A_2 + A_1)^{(1)}$ and $\big(A_1 + A_1^\prime\big)^{(1)}$ cases”, J. Math. Phys., 56 (2015), 092705, 25 pp., arXiv: 1401.7044 | DOI | MR | Zbl

[39] Joshi N., Nakazono N., Shi Y., “Lattice equations arising from discrete Painlevé systems: II $A^{(1)}_4$ case”, J. Phys. A: Math. Theor., 49 (2016), 495201, 39 pp., arXiv: 1603.09414 | DOI | MR | Zbl

[40] Kajiwara K., Noumi M., Yamada Y., “Discrete dynamical systems with $W\big(A_{m-1}^{(1)}\times A_{n-1}^{(1)}\big)$ symmetry”, Lett. Math. Phys., 60 (2002), 211–219, arXiv: nlin.SI/0106029 | DOI | MR | Zbl

[41] Kashaev R. M., “On discrete three-dimensional equations associated with the local Yang–Baxter relation”, Lett. Math. Phys., 38 (1996), 389–397, arXiv: solv-int/9512005 | DOI | MR | Zbl

[42] Kashaev R. M., Korepanov I. G., Sergeev S. M., “Functional tetrahedron equation”, Theoret. and Math. Phys., 117 (1998), 1402–1413, arXiv: solv-int/9801015 | DOI | MR | Zbl

[43] Kassotakis P., The construction of discrete dynamical system, Ph.D. Thesis, University of Leeds, 2006

[44] Kassotakis P., Nieszporski M., “Families of integrable equations”, SIGMA, 7 (2011), 100, 14 pp., arXiv: 1106.0636 | DOI | MR | Zbl

[45] Kassotakis P., Nieszporski M., “On non-multiaffine consistent around the cube lattice equations”, Phys. Lett. A, 376 (2012), 3135–3140, arXiv: 1106.0435 | DOI | Zbl

[46] Kassotakis P., Nieszporski M., “$2^n$-rational maps”, J. Phys. A: Math. Theor., 50 (2017), 21LT01, 9 pp., arXiv: 1512.00771 | DOI | MR | Zbl

[47] Kassotakis P., Nieszporski M., “Difference systems in bond and face variables and non-potential versions of discrete integrable systems”, J. Phys. A: Math. Theor., 51 (2018), 385203, 21 pp., arXiv: 1710.11111 | DOI | MR | Zbl

[48] Konstantinou-Rizos S., Mikhailov A. V., “Darboux transformations, finite reduction groups and related Yang–Baxter maps”, J. Phys. A: Math. Theor., 46 (2013), 425201, 16 pp. | DOI | MR | Zbl

[49] Korepanov I. G., Algebraic integrable dynamical systems, 2+1-dimensional models in wholly discrete space-time, and inhomogeneous models in 2-dimensional statistical physics, arXiv: solv-int/9506003

[50] Kouloukas T. E., “Relativistic collisions as Yang–Baxter maps”, Phys. Lett. A, 381 (2017), 3445–3449, arXiv: 1706.06361 | DOI | MR | Zbl

[51] Kouloukas T. E., Papageorgiou V. G., “Entwining Yang–Baxter maps and integrable lattices”, Algebra, Geometry and Mathematical Physics, Banach Center Publ., 93, Polish Acad. Sci. Inst. Math., Warsaw, 2011, 163–175 | DOI | MR | Zbl

[52] Maeda S., “Completely integrable symplectic mapping”, Proc. Japan Acad. Ser. A Math. Sci., 63 (1987), 198–200 | DOI | MR | Zbl

[53] Maillet J.-M., Nijhoff F., “Integrability for multidimensional lattice models”, Phys. Lett. B, 224 (1989), 389–396 | DOI | MR

[54] Maillet J.-M., Nijhoff F., “The tetrahedron equation and the four-simplex equation”, Phys. Lett. A, 134 (1989), 221–228 | DOI | MR

[55] McLachlan R. I., Quispel G. R. W., “Generating functions for dynamical systems with symmetries, integrals, and differential invariants”, Phys. D, 112 (1998), 298–309 | DOI | MR | Zbl

[56] Nieszporski M., Kassotakis P., Systems of difference equations on a vector valued function that admit a 3D vector space of scalar potentials, in preparation | MR

[57] Noumi M., Yamada Y., “Affine Weyl groups, discrete dynamical systems and Painlevé equations”, Comm. Math. Phys., 199 (1998), 281–295, arXiv: math.QA/9804132 | DOI | MR | Zbl

[58] Papageorgiou V. G., Nijhoff F. W., Capel H. W., “Integrable mappings and nonlinear integrable lattice equations”, Phys. Lett. A, 147 (1990), 106–114 | DOI | MR

[59] Papageorgiou V. G., Suris Yu. B., Tongas A. G., Veselov A. P., “On quadrirational Yang–Baxter maps”, SIGMA, 6 (2010), 033, 9 pp., arXiv: 0911.2895 | DOI | MR | Zbl

[60] Papageorgiou V. G., Tongas A. G., Veselov A. P., “Yang–Baxter maps and symmetries of integrable equations on quad-graphs”, J. Math. Phys., 47 (2006), 083502, 16 pp., arXiv: math.QA/0605206 | DOI | MR | Zbl

[61] Quispel G. R. W., Roberts J. A. G., Thompson C. J., “Integrable mappings and soliton equations”, Phys. Lett. A, 126 (1988), 419–421 | DOI | MR | Zbl

[62] Roberts J. A. G., Quispel G. R. W., “Creating and relating three-dimensional integrable maps”, J. Phys. A: Math. Gen., 39 (2006), L605–L615 | DOI | MR | Zbl

[63] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl

[64] Sergeev S. M., “Solutions of the functional tetrahedron equation connected with the local Yang–Baxter equation for the ferro-electric condition”, Lett. Math. Phys., 45 (1998), 113–119, arXiv: solv-int/9709006 | DOI | MR | Zbl

[65] Sklyanin E. K., “Classical limits of ${\rm SU}(2)$-invariant solutions of the Yang–Baxter equation”, J. Sov. Math., 40 (1988), 93–107 | DOI | Zbl

[66] Suris Yu. B., Veselov A. P., “Lax matrices for Yang–Baxter maps”, J. Nonlinear Math. Phys., 10:2 (2003), 223–230, arXiv: math.QA/0304122 | DOI | MR | Zbl

[67] Tsuda T., “Integrable mappings via rational elliptic surfaces”, J. Phys. A: Math. Gen., 37 (2004), 2721–2730 | DOI | MR | Zbl

[68] Veselov A. P., “Integrable maps”, Russian Math. Surveys, 46:5 (1991), 1–51 | DOI | MR | Zbl

[69] Veselov A. P., “Yang–Baxter maps and integrable dynamics”, Phys. Lett. A, 314 (2003), 214–221, arXiv: math.QA/0205335 | DOI | MR | Zbl

[70] Veselov A. P., “Yang–Baxter maps: dynamical point of view”, Combinatorial Aspect of Integrable Systems, MSJ Mem., 17, Math. Soc. Japan, Tokyo, 2007, 145–167 | MR | Zbl

[71] Veselov A. P., Shabat A. B., “Dressing chains and the spectral theory of the Schrödinger operator”, Funct. Anal. Appl., 27 (1993), 81–96 | DOI | MR | Zbl

[72] Viallet C. M., “Integrable lattice maps: $Q_{\rm V}$, a rational version of $Q_4$”, Glasg. Math. J., 51 (2009), 157–163, arXiv: 0802.0294 | DOI | MR

[73] Yang C. N., “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19 (1967), 1312–1315 | DOI | MR | Zbl