@article{SIGMA_2019_15_a47,
author = {Pavlos Kassotakis},
title = {Invariants in {Separated} {Variables:} {Yang{\textendash}Baxter,} {Entwining} and {Transfer} {Maps}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a47/}
}
Pavlos Kassotakis. Invariants in Separated Variables: Yang–Baxter, Entwining and Transfer Maps. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a47/
[1] Adler V. E., “Recuttings of polygons”, Funct. Anal. Appl., 27 (1993), 141–143 | DOI | MR | Zbl
[2] Adler V. E., “Bäcklund transformation for the Krichever–Novikov equation”, Int. Math. Res. Not., 1998 (1998), 1–4, arXiv: solv-int/9707015 | DOI | MR | Zbl
[3] Adler V. E., On a class of third order mappings with two rational invariants, arXiv: nlin.SI/0606056
[4] Adler V. E., Bobenko A. I., Suris Yu. B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543, arXiv: nlin.SI/0202024 | DOI | MR | Zbl
[5] Adler V. E., Bobenko A. I., Suris Yu. B., “Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings”, Comm. Anal. Geom., 12 (2004), 967–1007, arXiv: math.QA/0307009 | DOI | MR | Zbl
[6] Adler V. E., Shabat A. B., “Dressing chain for the acoustic spectral problem”, Theoret. and Math. Phys., 149 (2006), 1324–1337, arXiv: nlin.SI/0604008 | DOI | MR | Zbl
[7] Adler V. E., Yamilov R. I., “Explicit auto-transformations of integrable chains”, J. Phys. A: Math. Gen., 27 (1994), 477–492 | DOI | MR | Zbl
[8] Atkinson J., Idempotent biquadratics, Yang–Baxter maps and birational representations of Coxeter groups, arXiv: 1301.4613
[9] Atkinson J., Nieszporski M., “Multi-quadratic quad equations: integrable cases from a factorized-discriminant hypothesis”, Int. Math. Res. Not., 2014 (2014), 4215–4240, arXiv: 1204.0638 | DOI | MR | Zbl
[10] Atkinson J., Yamada Y., Quadrirational Yang–Baxter maps and the elliptic Cremona system, arXiv: 1804.01794
[11] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982 | MR | Zbl
[12] Bazhanov V. V., Sergeev S. M., “Yang–Baxter maps, discrete integrable equations and quantum groups”, Nuclear Phys. B, 926 (2018), 509–543, arXiv: 1501.06984 | DOI | MR | Zbl
[13] Boll R., “Classification of 3D consistent quad-equations”, J. Nonlinear Math. Phys., 18 (2011), 337–365, arXiv: 1009.4007 | DOI | MR | Zbl
[14] Bruschi M., Ragnisco O., Santini P. M., Tu G. Z., “Integrable symplectic maps”, Phys. D, 49 (1991), 273–294 | DOI | MR | Zbl
[15] Capel H. W., Sahadevan R., “A new family of four-dimensional symplectic and integrable mappings”, Phys. A, 289 (2001), 86–106 | DOI | MR | Zbl
[16] Cresswell C., Joshi N., “The discrete first, second and thirty-fourth Painlevé hierarchies”, J. Phys. A: Math. Gen., 32 (1999), 655–669 | DOI | MR | Zbl
[17] Dimakis A., Müller-Hoissen F., “Simplex and polygon equations”, SIGMA, 11 (2015), 042, 49 pp., arXiv: 1409.7855 | DOI | MR | Zbl
[18] Dimakis A., Müller-Hoissen F., “Matrix Kadomtsev–Petviashvili equation: tropical limit, Yang–Baxter and pentagon maps”, Theoret. and Math. Phys., 196 (2018), 1164–1173, arXiv: 1709.09848 | DOI | MR | Zbl
[19] Dimakis A., Müller-Hoissen F., “Matrix KP: tropical limit and Yang–Baxter maps”, Lett. Math. Phys., 109 (2019), 799–827, arXiv: 1708.05694 | DOI | MR | Zbl
[20] Doliwa A., “Non-commutative rational Yang–Baxter maps”, Lett. Math. Phys., 104 (2014), 299–309, arXiv: 1308.2824 | DOI | MR | Zbl
[21] Drinfel'd V. G., “On some unsolved problems in quantum group theory”, Quantum Groups (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 1–8 | DOI | MR
[22] Duistermaat J. J., Discrete integrable systems. QRT maps and elliptic surfaces, Springer Monographs in Mathematics, Springer, New York, 2010 | DOI | MR | Zbl
[23] Etingof P., “Geometric crystals and set-theoretical solutions to the quantum Yang–Baxter equation”, Comm. Algebra, 31 (2003), 1961–1973, arXiv: math.QA/0112278 | DOI | MR | Zbl
[24] Etingof P., Schedler T., Soloviev A., “Set-theoretical solutions to the quantum Yang–Baxter equation”, Duke Math. J., 100 (1999), 169–209, arXiv: math.QA/9801047 | DOI | MR | Zbl
[25] Evripidou C. A., Kassotakis P., Vanhaecke P., “Integrable deformations of the Bogoyavlenskij–Itoh Lotka–Volterra systems”, Regul. Chaotic Dyn., 22 (2017), 721–739, arXiv: 1709.06763 | DOI | MR | Zbl
[26] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl
[27] Fomin S., Zelevinsky A., “The Laurent phenomenon”, Adv. in Appl. Math., 28 (2002), 119–144, arXiv: math.CO/0104241 | DOI | MR | Zbl
[28] Fordy A. P., Hone A., “Discrete integrable systems and Poisson algebras from cluster maps”, Comm. Math. Phys., 325 (2014), 527–584, arXiv: 1207.6072 | DOI | MR | Zbl
[29] Fordy A. P., Kassotakis P., “Multidimensional maps of QRT type”, J. Phys. A: Math. Gen., 39 (2006), 10773–10786 | DOI | MR | Zbl
[30] Fordy A. P., Kassotakis P., “Integrable maps which preserve functions with symmetries”, J. Phys. A: Math. Theor., 46 (2013), 205201, 12 pp., arXiv: 1301.1927 | DOI | MR | Zbl
[31] Grahovski G. G., Konstantinou-Rizos S., Mikhailov A. V., “Grassmann extensions of Yang–Baxter maps”, J. Phys. A: Math. Theor., 49 (2016), 145202, 17 pp., arXiv: 1510.06913 | DOI | MR | Zbl
[32] Hay M., “Hierarchies of nonlinear integrable $q$-difference equations from series of Lax pairs”, J. Phys. A: Math. Theor., 40 (2007), 10457–10471 | DOI | MR | Zbl
[33] Hietarinta J., “Search for CAC-integrable homogeneous quadratic triplets of quad equations and their classification by BT and Lax”, J. Nonlinear Math. Phys., 26 (2019), 358–389, arXiv: 1806.08511 | DOI | MR | Zbl
[34] Hietarinta J., Joshi N., Nijhoff F. W., Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl
[35] Iatrou A., “Higher dimensional integrable mappings”, Phys. D, 179 (2003), 229–253 | DOI | MR | Zbl
[36] Jimbo M. (ed.), Yang–Baxter equation in integrable systems, Adv. Ser. Math. Phys., 10, World Sci. Publ., Teaneck, NJ, 1989 | DOI | MR
[37] Joshi N., Kassotakis P., Re-factorising a QRT map, arXiv: 1906.00501
[38] Joshi N., Nakazono N., Shi Y., “Lattice equations arising from discrete Painlevé systems. I $(A_2 + A_1)^{(1)}$ and $\big(A_1 + A_1^\prime\big)^{(1)}$ cases”, J. Math. Phys., 56 (2015), 092705, 25 pp., arXiv: 1401.7044 | DOI | MR | Zbl
[39] Joshi N., Nakazono N., Shi Y., “Lattice equations arising from discrete Painlevé systems: II $A^{(1)}_4$ case”, J. Phys. A: Math. Theor., 49 (2016), 495201, 39 pp., arXiv: 1603.09414 | DOI | MR | Zbl
[40] Kajiwara K., Noumi M., Yamada Y., “Discrete dynamical systems with $W\big(A_{m-1}^{(1)}\times A_{n-1}^{(1)}\big)$ symmetry”, Lett. Math. Phys., 60 (2002), 211–219, arXiv: nlin.SI/0106029 | DOI | MR | Zbl
[41] Kashaev R. M., “On discrete three-dimensional equations associated with the local Yang–Baxter relation”, Lett. Math. Phys., 38 (1996), 389–397, arXiv: solv-int/9512005 | DOI | MR | Zbl
[42] Kashaev R. M., Korepanov I. G., Sergeev S. M., “Functional tetrahedron equation”, Theoret. and Math. Phys., 117 (1998), 1402–1413, arXiv: solv-int/9801015 | DOI | MR | Zbl
[43] Kassotakis P., The construction of discrete dynamical system, Ph.D. Thesis, University of Leeds, 2006
[44] Kassotakis P., Nieszporski M., “Families of integrable equations”, SIGMA, 7 (2011), 100, 14 pp., arXiv: 1106.0636 | DOI | MR | Zbl
[45] Kassotakis P., Nieszporski M., “On non-multiaffine consistent around the cube lattice equations”, Phys. Lett. A, 376 (2012), 3135–3140, arXiv: 1106.0435 | DOI | Zbl
[46] Kassotakis P., Nieszporski M., “$2^n$-rational maps”, J. Phys. A: Math. Theor., 50 (2017), 21LT01, 9 pp., arXiv: 1512.00771 | DOI | MR | Zbl
[47] Kassotakis P., Nieszporski M., “Difference systems in bond and face variables and non-potential versions of discrete integrable systems”, J. Phys. A: Math. Theor., 51 (2018), 385203, 21 pp., arXiv: 1710.11111 | DOI | MR | Zbl
[48] Konstantinou-Rizos S., Mikhailov A. V., “Darboux transformations, finite reduction groups and related Yang–Baxter maps”, J. Phys. A: Math. Theor., 46 (2013), 425201, 16 pp. | DOI | MR | Zbl
[49] Korepanov I. G., Algebraic integrable dynamical systems, 2+1-dimensional models in wholly discrete space-time, and inhomogeneous models in 2-dimensional statistical physics, arXiv: solv-int/9506003
[50] Kouloukas T. E., “Relativistic collisions as Yang–Baxter maps”, Phys. Lett. A, 381 (2017), 3445–3449, arXiv: 1706.06361 | DOI | MR | Zbl
[51] Kouloukas T. E., Papageorgiou V. G., “Entwining Yang–Baxter maps and integrable lattices”, Algebra, Geometry and Mathematical Physics, Banach Center Publ., 93, Polish Acad. Sci. Inst. Math., Warsaw, 2011, 163–175 | DOI | MR | Zbl
[52] Maeda S., “Completely integrable symplectic mapping”, Proc. Japan Acad. Ser. A Math. Sci., 63 (1987), 198–200 | DOI | MR | Zbl
[53] Maillet J.-M., Nijhoff F., “Integrability for multidimensional lattice models”, Phys. Lett. B, 224 (1989), 389–396 | DOI | MR
[54] Maillet J.-M., Nijhoff F., “The tetrahedron equation and the four-simplex equation”, Phys. Lett. A, 134 (1989), 221–228 | DOI | MR
[55] McLachlan R. I., Quispel G. R. W., “Generating functions for dynamical systems with symmetries, integrals, and differential invariants”, Phys. D, 112 (1998), 298–309 | DOI | MR | Zbl
[56] Nieszporski M., Kassotakis P., Systems of difference equations on a vector valued function that admit a 3D vector space of scalar potentials, in preparation | MR
[57] Noumi M., Yamada Y., “Affine Weyl groups, discrete dynamical systems and Painlevé equations”, Comm. Math. Phys., 199 (1998), 281–295, arXiv: math.QA/9804132 | DOI | MR | Zbl
[58] Papageorgiou V. G., Nijhoff F. W., Capel H. W., “Integrable mappings and nonlinear integrable lattice equations”, Phys. Lett. A, 147 (1990), 106–114 | DOI | MR
[59] Papageorgiou V. G., Suris Yu. B., Tongas A. G., Veselov A. P., “On quadrirational Yang–Baxter maps”, SIGMA, 6 (2010), 033, 9 pp., arXiv: 0911.2895 | DOI | MR | Zbl
[60] Papageorgiou V. G., Tongas A. G., Veselov A. P., “Yang–Baxter maps and symmetries of integrable equations on quad-graphs”, J. Math. Phys., 47 (2006), 083502, 16 pp., arXiv: math.QA/0605206 | DOI | MR | Zbl
[61] Quispel G. R. W., Roberts J. A. G., Thompson C. J., “Integrable mappings and soliton equations”, Phys. Lett. A, 126 (1988), 419–421 | DOI | MR | Zbl
[62] Roberts J. A. G., Quispel G. R. W., “Creating and relating three-dimensional integrable maps”, J. Phys. A: Math. Gen., 39 (2006), L605–L615 | DOI | MR | Zbl
[63] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[64] Sergeev S. M., “Solutions of the functional tetrahedron equation connected with the local Yang–Baxter equation for the ferro-electric condition”, Lett. Math. Phys., 45 (1998), 113–119, arXiv: solv-int/9709006 | DOI | MR | Zbl
[65] Sklyanin E. K., “Classical limits of ${\rm SU}(2)$-invariant solutions of the Yang–Baxter equation”, J. Sov. Math., 40 (1988), 93–107 | DOI | Zbl
[66] Suris Yu. B., Veselov A. P., “Lax matrices for Yang–Baxter maps”, J. Nonlinear Math. Phys., 10:2 (2003), 223–230, arXiv: math.QA/0304122 | DOI | MR | Zbl
[67] Tsuda T., “Integrable mappings via rational elliptic surfaces”, J. Phys. A: Math. Gen., 37 (2004), 2721–2730 | DOI | MR | Zbl
[68] Veselov A. P., “Integrable maps”, Russian Math. Surveys, 46:5 (1991), 1–51 | DOI | MR | Zbl
[69] Veselov A. P., “Yang–Baxter maps and integrable dynamics”, Phys. Lett. A, 314 (2003), 214–221, arXiv: math.QA/0205335 | DOI | MR | Zbl
[70] Veselov A. P., “Yang–Baxter maps: dynamical point of view”, Combinatorial Aspect of Integrable Systems, MSJ Mem., 17, Math. Soc. Japan, Tokyo, 2007, 145–167 | MR | Zbl
[71] Veselov A. P., Shabat A. B., “Dressing chains and the spectral theory of the Schrödinger operator”, Funct. Anal. Appl., 27 (1993), 81–96 | DOI | MR | Zbl
[72] Viallet C. M., “Integrable lattice maps: $Q_{\rm V}$, a rational version of $Q_4$”, Glasg. Math. J., 51 (2009), 157–163, arXiv: 0802.0294 | DOI | MR
[73] Yang C. N., “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19 (1967), 1312–1315 | DOI | MR | Zbl