Rational KdV Potentials and Differential Galois Theory
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, using differential Galois theory, we study the spectral problem of the one-dimensional Schrödinger equation for rational time dependent KdV potentials. In particular, we compute the fundamental matrices of the linear systems associated to the Schrödinger equation. Furthermore we prove the invariance of the Galois groups with respect to time, to generic values of the spectral parameter and to Darboux transformations.
Keywords: differential Galois theory, KdV hierarchy, Schrödinger operator, spectral curves
Mots-clés : Darboux transformations, rational solitons.
@article{SIGMA_2019_15_a46,
     author = {Sonia Jim\'enez and Juan J. Morales-Ruiz and Raquel S\'anchez-Cauce and Mar{\'\i}a-\'Angeles Zurro},
     title = {Rational {KdV} {Potentials} and {Differential} {Galois} {Theory}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a46/}
}
TY  - JOUR
AU  - Sonia Jiménez
AU  - Juan J. Morales-Ruiz
AU  - Raquel Sánchez-Cauce
AU  - María-Ángeles Zurro
TI  - Rational KdV Potentials and Differential Galois Theory
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a46/
LA  - en
ID  - SIGMA_2019_15_a46
ER  - 
%0 Journal Article
%A Sonia Jiménez
%A Juan J. Morales-Ruiz
%A Raquel Sánchez-Cauce
%A María-Ángeles Zurro
%T Rational KdV Potentials and Differential Galois Theory
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a46/
%G en
%F SIGMA_2019_15_a46
Sonia Jiménez; Juan J. Morales-Ruiz; Raquel Sánchez-Cauce; María-Ángeles Zurro. Rational KdV Potentials and Differential Galois Theory. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a46/

[1] Adler M., Moser J., “On a class of polynomials connected with the Korteweg–de Vries equation”, Comm. Math. Phys., 61 (1978), 1–30 | DOI | MR | Zbl

[2] Airault H., McKean H. P., Moser J., “Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem”, Comm. Pure Appl. Math., 30 (1977), 95–148 | DOI | MR | Zbl

[3] Beardon A. F., Ng T. W., “Parametrizations of algebraic curves”, Ann. Acad. Sci. Fenn. Math., 31 (2006), 541–554 | MR | Zbl

[4] Braverman A., Etingof P., Gaitsgory D., “Quantum integrable systems and differential Galois theory”, Transform. Groups, 2 (1997), 31–56, arXiv: alg-geom/9607012 | DOI | MR | Zbl

[5] Brezhnev Yu. V., What does integrability of finite-gap or soliton potentials mean?, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366 (2008), 923–945, arXiv: nlin.SI/0505003 | DOI | MR | Zbl

[6] Brezhnev Yu. V., “Spectral/quadrature duality: Picard–Vessiot theory and finite-gap potentials”, Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemp. Math., 563, Amer. Math. Soc., Providence, RI, 2012, 1–31, arXiv: 1011.1642 | DOI | MR | Zbl

[7] Brezhnev Yu. V., “Elliptic solitons, Fuchsian equations, and algorithms”, St. Petersburg Math. J., 24 (2013), 555–574 | DOI | MR | Zbl

[8] Burchnall J. L., Chaundy T. W., “Commutative ordinary differential operators”, Proc. R. Soc. London Ser. A, 118 (1928), 557–583 | DOI | MR | Zbl

[9] Clarkson P. A., “Vortices and polynomials”, Stud. Appl. Math., 123 (2009), 37–62, arXiv: 0901.0139 | DOI | MR | Zbl

[10] Crum M. M., “Associated Sturm–Liouville systems”, Quart. J. Math. Oxford, 6 (1955), 121–127 | DOI | MR

[11] Darboux G., “Sur une proposition relative aux équations linéaires”, Comptes Rendus Acad. Sci., 94 (1882), 1456–1459

[12] Darboux G., Leçons sur la théorie générale des surfaces, v. II, Gauthier-Villars, Paris, 1889 | MR

[13] Ehlers F., Knörrer H., “An algebro-geometric interpretation of the Bäcklund-transformation for the Korteweg–de Vries equation”, Comment. Math. Helv., 57 (1982), 1–10 | DOI | MR | Zbl

[14] Gel'fand I. M., Dikii L. A., “Asymptotic properties of the resolvent of Sturm–Liouville equations and the algebra of Korteweg–de Vries equations”, Russian Math. Surveys, 30:5 (1975), 77–113 | DOI | MR | Zbl

[15] Gesztesy F., Holden H., Soliton equations and their algebro-geometric solutions, v. I, Cambridge Studies in Advanced Mathematics, 79, $(1+1)$-dimensional continuous models, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl

[16] Gu C., Hu H., Zhou Z., Darboux transformations in integrable systems. Theory and their applications to geometry, Mathematical Physics Studies, 26, Springer, Dordrecht, 2005 | DOI | MR | Zbl

[17] Hermite C., Sur l'équation de Lamé, Oeuvres of Charles Hermite, III, Gauthier-Villars, Paris, 1912 | MR

[18] Jiménez S., Morales-Ruiz J. J., Sánchez-Cauce R., Zurro M.-A., “Differential Galois theory and Darboux transformations for integrable systems”, J. Geom. Phys., 115 (2017), 75–88 | DOI | MR | Zbl

[19] Marshall I., Semenov-Tian-Shansky M., “Poisson groups and differential Galois theory of Schroedinger equation on the circle”, Comm. Math. Phys., 284 (2008), 537–552, arXiv: 0710.5456 | DOI | MR | Zbl

[20] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl

[21] Morales-Ruiz J. J., Rueda S. L., Zurro M.-A., Algebro-geometric solitonic solutions and differential Galois theory, arXiv: 1708.00431

[22] Morales-Ruiz J. J., Rueda S. L., Zurro M.-A., Factorization of KdV Schrödinger operators using differential subresultants, arXiv: 1902.05443

[23] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | DOI | MR | Zbl

[24] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl

[25] Wilson G., “On the quasi-Hamiltonian formalism of the KdV equation”, Phys. Lett. A, 132 (1988), 445–450 | DOI | MR | Zbl