Mots-clés : Darboux transformations, rational solitons.
@article{SIGMA_2019_15_a46,
author = {Sonia Jim\'enez and Juan J. Morales-Ruiz and Raquel S\'anchez-Cauce and Mar{\'\i}a-\'Angeles Zurro},
title = {Rational {KdV} {Potentials} and {Differential} {Galois} {Theory}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a46/}
}
TY - JOUR AU - Sonia Jiménez AU - Juan J. Morales-Ruiz AU - Raquel Sánchez-Cauce AU - María-Ángeles Zurro TI - Rational KdV Potentials and Differential Galois Theory JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a46/ LA - en ID - SIGMA_2019_15_a46 ER -
%0 Journal Article %A Sonia Jiménez %A Juan J. Morales-Ruiz %A Raquel Sánchez-Cauce %A María-Ángeles Zurro %T Rational KdV Potentials and Differential Galois Theory %J Symmetry, integrability and geometry: methods and applications %D 2019 %V 15 %U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a46/ %G en %F SIGMA_2019_15_a46
Sonia Jiménez; Juan J. Morales-Ruiz; Raquel Sánchez-Cauce; María-Ángeles Zurro. Rational KdV Potentials and Differential Galois Theory. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a46/
[1] Adler M., Moser J., “On a class of polynomials connected with the Korteweg–de Vries equation”, Comm. Math. Phys., 61 (1978), 1–30 | DOI | MR | Zbl
[2] Airault H., McKean H. P., Moser J., “Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem”, Comm. Pure Appl. Math., 30 (1977), 95–148 | DOI | MR | Zbl
[3] Beardon A. F., Ng T. W., “Parametrizations of algebraic curves”, Ann. Acad. Sci. Fenn. Math., 31 (2006), 541–554 | MR | Zbl
[4] Braverman A., Etingof P., Gaitsgory D., “Quantum integrable systems and differential Galois theory”, Transform. Groups, 2 (1997), 31–56, arXiv: alg-geom/9607012 | DOI | MR | Zbl
[5] Brezhnev Yu. V., What does integrability of finite-gap or soliton potentials mean?, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366 (2008), 923–945, arXiv: nlin.SI/0505003 | DOI | MR | Zbl
[6] Brezhnev Yu. V., “Spectral/quadrature duality: Picard–Vessiot theory and finite-gap potentials”, Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemp. Math., 563, Amer. Math. Soc., Providence, RI, 2012, 1–31, arXiv: 1011.1642 | DOI | MR | Zbl
[7] Brezhnev Yu. V., “Elliptic solitons, Fuchsian equations, and algorithms”, St. Petersburg Math. J., 24 (2013), 555–574 | DOI | MR | Zbl
[8] Burchnall J. L., Chaundy T. W., “Commutative ordinary differential operators”, Proc. R. Soc. London Ser. A, 118 (1928), 557–583 | DOI | MR | Zbl
[9] Clarkson P. A., “Vortices and polynomials”, Stud. Appl. Math., 123 (2009), 37–62, arXiv: 0901.0139 | DOI | MR | Zbl
[10] Crum M. M., “Associated Sturm–Liouville systems”, Quart. J. Math. Oxford, 6 (1955), 121–127 | DOI | MR
[11] Darboux G., “Sur une proposition relative aux équations linéaires”, Comptes Rendus Acad. Sci., 94 (1882), 1456–1459
[12] Darboux G., Leçons sur la théorie générale des surfaces, v. II, Gauthier-Villars, Paris, 1889 | MR
[13] Ehlers F., Knörrer H., “An algebro-geometric interpretation of the Bäcklund-transformation for the Korteweg–de Vries equation”, Comment. Math. Helv., 57 (1982), 1–10 | DOI | MR | Zbl
[14] Gel'fand I. M., Dikii L. A., “Asymptotic properties of the resolvent of Sturm–Liouville equations and the algebra of Korteweg–de Vries equations”, Russian Math. Surveys, 30:5 (1975), 77–113 | DOI | MR | Zbl
[15] Gesztesy F., Holden H., Soliton equations and their algebro-geometric solutions, v. I, Cambridge Studies in Advanced Mathematics, 79, $(1+1)$-dimensional continuous models, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl
[16] Gu C., Hu H., Zhou Z., Darboux transformations in integrable systems. Theory and their applications to geometry, Mathematical Physics Studies, 26, Springer, Dordrecht, 2005 | DOI | MR | Zbl
[17] Hermite C., Sur l'équation de Lamé, Oeuvres of Charles Hermite, III, Gauthier-Villars, Paris, 1912 | MR
[18] Jiménez S., Morales-Ruiz J. J., Sánchez-Cauce R., Zurro M.-A., “Differential Galois theory and Darboux transformations for integrable systems”, J. Geom. Phys., 115 (2017), 75–88 | DOI | MR | Zbl
[19] Marshall I., Semenov-Tian-Shansky M., “Poisson groups and differential Galois theory of Schroedinger equation on the circle”, Comm. Math. Phys., 284 (2008), 537–552, arXiv: 0710.5456 | DOI | MR | Zbl
[20] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[21] Morales-Ruiz J. J., Rueda S. L., Zurro M.-A., Algebro-geometric solitonic solutions and differential Galois theory, arXiv: 1708.00431
[22] Morales-Ruiz J. J., Rueda S. L., Zurro M.-A., Factorization of KdV Schrödinger operators using differential subresultants, arXiv: 1902.05443
[23] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | DOI | MR | Zbl
[24] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl
[25] Wilson G., “On the quasi-Hamiltonian formalism of the KdV equation”, Phys. Lett. A, 132 (1988), 445–450 | DOI | MR | Zbl