Mots-clés : Painlevé equation, isomonodromy deformation
@article{SIGMA_2019_15_a45,
author = {Alexander V. Kitaev},
title = {Meromorphic {Solution} of the {Degenerate} {Third} {Painlev\'e} {Equation} {Vanishing} at the {Origin}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a45/}
}
TY - JOUR AU - Alexander V. Kitaev TI - Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a45/ LA - en ID - SIGMA_2019_15_a45 ER -
Alexander V. Kitaev. Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a45/
[1] Bilman D., Ling L., Miller P. D., Extreme superposition: roague waves of infinite order and the Painlevé-III hierarchy, arXiv: 1806.00545
[2] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953
[3] Gamayun O., Iorgov N., Lisovyy O., “How instanton combinatorics solves Painlevé VI, V and IIIs”, J. Phys. A: Math. Theor., 46 (2013), 335203, 29 pp., arXiv: 1302.1832 | DOI | MR | Zbl
[4] Garnier R., “Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes”, Ann. Sci. École Norm. Sup. (3), 29 (1912), 1–126 | DOI | MR | Zbl
[5] Hardy G. H., Littlewood J. E., “Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive”, Proc. London Math. Soc., 13 (1914), 174–191 | DOI | MR | Zbl
[6] Hardy G. H., Wright E. M., An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979 | MR | Zbl
[7] Kitaev A. V., Vartanian A., “Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I”, Inverse Problems, 20 (2004), 1165–1206, arXiv: math.CA/0312075 | DOI | MR | Zbl
[8] Kitaev A. V., Vartanian A., “Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation: II”, Inverse Problems, 26 (2010), 105010, 58 pp., arXiv: 1005.2677 | DOI | MR | Zbl
[9] Kitaev A. V., Vartanian A., Asymptotics of integrals of some functions related to the degenerate third Painlevé equation, arXiv: 1811.05276 | MR
[10] Sloane N. J. A., Sequences A001764, A023745, A029858, A031988, and A014915, The on-line encyclopedia of integer sequences, http://oeis.org
[11] Suleimanov B. I., “Effect of a small dispersion on self-focusing in a spatially one-dimensional case”, JETP Lett., 106 (2017), 400–405, arXiv: 1706.06849 | DOI
[12] Weisstein E. W., Dirichlet divisor problem, Wolfram MathWorld, http://mathworld.wolfram.com/DirichletDivisorProblem.html
[13] Zhou X., “The Riemann–Hilbert problem and inverse scattering”, SIAM J. Math. Anal., 20 (1989), 966–986 | DOI | MR | Zbl