@article{SIGMA_2019_15_a43,
author = {Mats Vermeeren},
title = {A {Variational} {Perspective} on {Continuum} {Limits} of {ABS} and {Lattice} {GD} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a43/}
}
Mats Vermeeren. A Variational Perspective on Continuum Limits of ABS and Lattice GD Equations. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a43/
[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, D.C., 1964 | MR
[2] Adler V.E., Bobenko A.I., Suris Yu.B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543, arXiv: nlin.SI/0202024 | DOI | MR | Zbl
[3] Adler V.E., Suris Yu.B., “${\rm Q}_4$: integrable master equation related to an elliptic curve”, Int. Math. Res. Not., 2004 (2004), 2523–2553 | DOI | MR | Zbl
[4] Bobenko A.I., Suris Yu.B., “On the Lagrangian structure of integrable quad-equations”, Lett. Math. Phys., 92 (2010), 17–31, arXiv: 0912.2464 | DOI | MR | Zbl
[5] Boll R., Petrera M., Suris Yu.B., What is integrability of discrete variational systems?, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20130550, 15 pp., arXiv: 1307.0523 | DOI | MR | Zbl
[6] Dickey L.A., Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics, 26, 2nd ed., World Sci. Publ. Co. Inc., River Edge, NJ, 2003 | DOI | MR | Zbl
[7] Fu W., Nijhoff F.W., “On reductions of the discrete Kadomtsev–Petviashvili-type equations”, J. Phys. A: Math. Theor., 50 (2017), 505203, 21 pp., arXiv: 1705.04819 | DOI | MR | Zbl
[8] Fu W., Nijhoff F.W., “Linear integral equations, infinite matrices, and soliton hierarchies”, J. Math. Phys., 59 (2018), 071101, 28 pp., arXiv: 1703.08137 | DOI | MR | Zbl
[9] Hietarinta J., Joshi N., Nijhoff F.W., Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl
[10] Hietarinta J., Zhang D.-J., “Soliton solutions for ABS lattice equations. II Casoratians and bilinearization”, J. Phys. A: Math. Theor., 42 (2009), 404006, 30 pp., arXiv: 0903.1717 | DOI | MR | Zbl
[11] Hirota R., “Nonlinear partial difference equations. III Discrete sine-Gordon equation”, J. Phys. Soc. Japan, 43 (1977), 2079–2086 | DOI | MR | Zbl
[12] Krichever I.M., Novikov S.P., “Holomorphic bundles over algebraic curves and non-linear equations”, Russian Math. Surveys, 35:6 (1980), 53–79 | DOI | MR | Zbl
[13] Lobb S., Nijhoff F., “Lagrangian multiforms and multidimensional consistency”, J. Phys. A: Math. Theor., 42 (2009), 454013, 18 pp., arXiv: 0903.4086 | DOI | MR | Zbl
[14] Lobb S.B., Nijhoff F.W., Lagrangian multiform structure for the lattice Gel'fand–Dikii hierarchy, J. Phys. A: Math. Theor., 43 (2010), 072003, 11 pp., arXiv: 0911.1234 | DOI | MR | Zbl
[15] Miura R.M., “Korteweg–de Vries equation and generalizations. I A remarkable explicit nonlinear transformation”, J. Math. Phys., 9 (1968), 1202–1204 | DOI | MR | Zbl
[16] Miwa T., “On {H}irota's difference equations”, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 9–12 | DOI | MR | Zbl
[17] Nijhoff F.W., “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297 (2002), 49–58, arXiv: nlin.SI/0110027 | DOI | MR | Zbl
[18] Nijhoff F., Atkinson J., Hietarinta J., “Soliton solutions for {ABS} lattice equations. I Cauchy matrix approach”, J. Phys. A: Math. Theor., 42 (2009), 404005, 34 pp., arXiv: 0902.4873 | DOI | MR | Zbl
[19] Nijhoff F., Capel H., “The discrete Korteweg–de Vries equation”, Acta Appl. Math., 39 (1995), 133–158 | DOI | MR | Zbl
[20] Nijhoff F.W., Papageorgiou V.G., Capel H.W., Quispel G.R.W., “The lattice Gel'fand–Dikiĭ hierarchy”, Inverse Problems, 8 (1992), 597–621 | DOI | MR | Zbl
[21] Quispel G.R.W., Nijhoff F.W., Capel H.W., van der Linden J., “Linear integral equations and nonlinear difference-difference equations”, Phys. A, 125 (1984), 344–380 | DOI | MR | Zbl
[22] SageMath, the Sage Mathematics Software System (Version 7.5.1), , 2017 http://www.sagemath.org
[23] Suris Yu.B., Vermeeren M., “On the Lagrangian structure of integrable hierarchies”, Advances in Discrete Differential Geometry, Springer, Berlin, 2016, 347–378, arXiv: 1510.03724 | DOI | MR | Zbl
[24] Tongas A., Nijhoff F., “The Boussinesq integrable system: compatible lattice and continuum structures”, Glasg. Math. J., 47 (2005), 205–219, arXiv: nlin.SI/0402053 | DOI | MR
[25] Vermeeren M., “Continuum limits of pluri-Lagrangian systems”, J. Integrable Syst., 4 (2019), xyy020, 34 pp., arXiv: 1706.06830 | DOI | MR | Zbl
[26] Walker A.J., Similarity reductions and integrable lattice equations, Ph.D. Thesis, University of Leeds, 2001 http://etheses.whiterose.ac.uk/7190/ | Zbl
[27] Wiersma G.L., Capel H.W., “Lattice equations, hierarchies and Hamiltonian structures”, Phys. A, 142 (1987), 199–244 | DOI | MR | Zbl
[28] Yoo-Kong S., Lobb S., Nijhoff F., “Discrete-time Calogero–Moser system and Lagrangian 1-form structure”, J. Phys. A: Math. Theor., 44 (2011), 365203, 39 pp., arXiv: 1102.0663 | DOI | MR | Zbl
[29] Zagier D., “The dilogarithm function”, Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 3–65 | DOI | MR | Zbl
[30] Zhang D., Zhang D.-J., “Rational solutions to the {ABS} list: transformation approach”, SIGMA, 13 (2017), 078, 24 pp., arXiv: 1702.01266 | DOI | MR | Zbl
[31] Zhao S.-L., Zhang D.-J., “Rational solutions to ${\rm Q}3_{\delta}$ in the Adler-Bobenko–Suris list and degenerations”, J. Nonlinear Math. Phys., 26 (2019), 107–132, arXiv: 1703.05669 | DOI | MR | Zbl