A Note on Spectral Triples on the Quantum Disk
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By modifying the ideas from our previous paper [SIGMA 13 (2017), 075, 26 pages, arXiv:1705.04005], we construct spectral triples from implementations of covariant derivations on the quantum disk.
Keywords: invariant and covariant derivations, spectral triple, quantum disk.
@article{SIGMA_2019_15_a42,
     author = {Slawomir Klimek and Matt McBride and John Wilson Peoples},
     title = {A {Note} on {Spectral} {Triples} on the {Quantum} {Disk}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a42/}
}
TY  - JOUR
AU  - Slawomir Klimek
AU  - Matt McBride
AU  - John Wilson Peoples
TI  - A Note on Spectral Triples on the Quantum Disk
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a42/
LA  - en
ID  - SIGMA_2019_15_a42
ER  - 
%0 Journal Article
%A Slawomir Klimek
%A Matt McBride
%A John Wilson Peoples
%T A Note on Spectral Triples on the Quantum Disk
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a42/
%G en
%F SIGMA_2019_15_a42
Slawomir Klimek; Matt McBride; John Wilson Peoples. A Note on Spectral Triples on the Quantum Disk. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a42/

[1] Carey A.L., Klimek S., Wojciechowski K.P., “A Dirac type operator on the non-commutative disk”, Lett. Math. Phys., 93 (2010), 107–125 | DOI | MR | Zbl

[2] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl

[3] Connes A., “Cyclic cohomology, quantum group symmetries and the local index formula for ${\rm SU}_q(2)$”, J. Inst. Math. Jussieu, 3 (2004), 17–68, arXiv: math.QA/0209142 | DOI | MR | Zbl

[4] Connes A., Moscovici H., “Transgression and the {C}hern character of finite-dimensional $K$-cycles”, Comm. Math. Phys., 155 (1993), 103–122 | DOI | MR | Zbl

[5] D'Andrea F., Da̧browski L., “Local index formula on the equatorial {P}odleś sphere”, Lett. Math. Phys., 75 (2006), 235–254, arXiv: math.QA/0507337 | DOI | MR | Zbl

[6] Engliš M., Falk K., Iochum B., “Spectral triples and {T}oeplitz operators”, J. Noncommut. Geom., 9 (2015), 1041–1076, arXiv: 1402.3061 | DOI | MR | Zbl

[7] Forsyth I., Mesland B., Rennie A., “Dense domains, symmetric operators and spectral triples”, New York J. Math., 20 (2014), 1001–1020, arXiv: 1306.1580 | MR | Zbl

[8] Klimek S., McBride M., “d-bar operators on quantum domains”, Math. Phys. Anal. Geom., 13 (2010), 357–390, arXiv: 1001.2216 | DOI | MR | Zbl

[9] Klimek S., McBride M., Rathnayake S., Sakai K., Wang H., “Derivations and spectral triples on quantum domains I: Quantum disk”, SIGMA, 13 (2017), 075, 26 pp., arXiv: 1705.04005 | DOI | MR | Zbl

[10] Klimek S., McBride M., Rathnayake S., “Derivations and spectral triples on quantum domains II: Quantum annulus”, Sci. China Math. (to appear) , arXiv: 1710.06257