Classification of Rank 2 Cluster Varieties
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify rank $2$ cluster varieties (those for which the span of the rows of the exchange matrix is $2$-dimensional) according to the deformation type of a generic fiber $U$ of their $\mathcal{X}$-spaces, as defined by Fock and Goncharov [Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 865–930]. Our approach is based on the work of Gross, Hacking, and Keel for cluster varieties and log Calabi–Yau surfaces. Call $U$ positive if $\dim[\Gamma(U,\mathcal{O}_U)] = \dim(U)$ (which equals 2 in these rank 2 cases). This is the condition for the Gross–Hacking–Keel construction [Publ. Math. Inst. Hautes Études Sci. 122 (2015), 65–168] to produce an additive basis of theta functions on $\Gamma(U,\mathcal{O}_U)$. We find that $U$ is positive and either finite-type or non-acyclic (in the usual cluster sense) if and only if the inverse monodromy of the tropicalization $U^{\mathrm{trop}}$ of $U$ is one of Kodaira's monodromies. In these cases we prove uniqueness results about the log Calabi–Yau surfaces whose tropicalization is $U^{\mathrm{trop}}$. We also describe the action of the cluster modular group on $U^{\mathrm{trop}}$ in the positive cases.
Keywords: cluster varieties, tropicalization, cluster modular group.
Mots-clés : log Calabi–Yau surfaces
@article{SIGMA_2019_15_a41,
     author = {Travis Mandel},
     title = {Classification of {Rank} 2 {Cluster} {Varieties}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a41/}
}
TY  - JOUR
AU  - Travis Mandel
TI  - Classification of Rank 2 Cluster Varieties
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a41/
LA  - en
ID  - SIGMA_2019_15_a41
ER  - 
%0 Journal Article
%A Travis Mandel
%T Classification of Rank 2 Cluster Varieties
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a41/
%G en
%F SIGMA_2019_15_a41
Travis Mandel. Classification of Rank 2 Cluster Varieties. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a41/

[1] Assem I., Schiffler R., Shramchenko V., “Cluster automorphisms”, Proc. Lond. Math. Soc., 104 (2012), 1271–1302, arXiv: 1009.0742 | DOI | MR | Zbl

[2] Cadavid C.A., Vélez J.D., “Normal factorization in ${\rm SL}(2,{\mathbb Z})$ and the confluence of singular fibers in elliptic fibrations”, Beiträge Algebra Geom., 50 (2009), 405–423, arXiv: 0802.0005 | MR | Zbl

[3] Chan K., Ueda K., “Dual torus fibrations and homological mirror symmetry for $A_n$-singlarities”, Commun. Number Theory Phys., 7 (2013), 361–396, arXiv: 1210.0652 | DOI | MR | Zbl

[4] Dupont G., “An approach to non-simply laced cluster algebras”, J. Algebra, 320 (2008), 1626–1661, arXiv: math.RT/0512043 | DOI | MR | Zbl

[5] Fock V.V., Goncharov A.B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI | MR | Zbl

[6] Fomin S., Zelevinsky A., “Cluster algebras. II Finite type classification”, Invent. Math., 154 (2003), 63–121, arXiv: math.RA/0208229 | DOI | MR | Zbl

[7] Gross M., “Examples of special Lagrangian fibrations”, Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Sci. Publ., River Edge, NJ, 2001, 81–109, arXiv: math.AG/0012002 | DOI | MR | Zbl

[8] Gross M., Hacking P., Keel S., “Birational geometry of cluster algebras”, Algebr. Geom., 2 (2015), 137–175, arXiv: 1309.2573 | DOI | MR | Zbl

[9] Gross M., Hacking P., Keel S., “Mirror symmetry for log Calabi–Yau surfaces I”, Publ. Math. Inst. Hautes Études Sci., 122 (2015), 65–168, arXiv: 1106.4977 | DOI | MR | Zbl

[10] Gross M., Hacking P., Keel S., Mirror symmetry for log Calabi–Yau surfaces II, in preparation

[11] Gross M., Hacking P., Keel S., “Moduli of surfaces with an anti-canonical cycle”, Compos. Math., 151 (2015), 265–291, arXiv: 1211.6367 | DOI | MR | Zbl

[12] Gross M., Hacking P., Keel S., Kontsevich M., “Canonical bases for cluster algebras”, J. Amer. Math. Soc., 31 (2018), 497–608, arXiv: 1411.1394 | DOI | MR | Zbl

[13] Gross M., Pandharipande R., “Quivers, curves, and the tropical vertex”, Port. Math., 67 (2010), 211–259, arXiv: 0909.5153 | DOI | MR | Zbl

[14] Gross M., Pandharipande R., Siebert B., “The tropical vertex”, Duke Math. J., 153 (2010), 297–362, arXiv: 0902.0779 | DOI | MR | Zbl

[15] Gross M., Siebert B., “From real affine geometry to complex geometry”, Ann. of Math., 174 (2011), 1301–1428, arXiv: math.AG/0703822 | DOI | MR | Zbl

[16] Heckman G., Looijenga E., “The moduli space of rational elliptic surfaces”, Algebraic Geometry 2000 (Azumino, Hotaka), Adv. Stud. Pure Math., 36, Math. Soc. Japan, Tokyo, 2002, 185–248, arXiv: math.AG/0010020 | DOI | MR | Zbl

[17] Kodaira K., “On compact analytic surfaces. II”, Ann. of Math., 77 (1963), 563–626 | DOI | MR | Zbl

[18] Kontsevich M., Soibelman Y., “Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry”, Homological Mirror Symmetry and Tropical Geometry, Lect. Notes Unione Mat. Ital., 15, Springer, Cham, 2014, 197–308, arXiv: 1303.3253 | DOI | MR | Zbl

[19] Mandel T., “Tropical theta functions and log Calabi–Yau surfaces”, Selecta Math. (N.S.), 22 (2016), 1289–1335, arXiv: 1407.5901 | DOI | MR | Zbl

[20] Mandel T., “Cluster algebras are Cox rings”, Manuscripta Math. (to appear) , arXiv: 1707.05819 | DOI

[21] Symington M., “Four dimensions from two in symplectic topology”, Topology and Geometry of Manifolds (Athens, GA, 2001), Proc. Sympos. Pure Math., 71, Amer. Math. Soc., Providence, RI, 2003, 153–208, arXiv: math.SG/0210033 | DOI | MR | Zbl