Duality between Final-Seed and Initial-Seed Mutations in Cluster Algebras
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the duality between the mutations and the initial-seed mutations in cluster algebras, where the initial-seed mutations are the transformations of rational expressions of cluster variables in terms of the initial cluster under the change of the initial cluster. In particular, we define the maximal degree matrices of the $F$-polynomials called the $F$-matrices and show that the $F$-matrices have the self-duality which is analogous to the duality between the $C$- and $G$-matrices.
Keywords: cluster algebra, duality.
Mots-clés : mutation
@article{SIGMA_2019_15_a39,
     author = {Shogo Fujiwara and Yasuaki Gyoda},
     title = {Duality between {Final-Seed} and {Initial-Seed} {Mutations} in {Cluster} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a39/}
}
TY  - JOUR
AU  - Shogo Fujiwara
AU  - Yasuaki Gyoda
TI  - Duality between Final-Seed and Initial-Seed Mutations in Cluster Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a39/
LA  - en
ID  - SIGMA_2019_15_a39
ER  - 
%0 Journal Article
%A Shogo Fujiwara
%A Yasuaki Gyoda
%T Duality between Final-Seed and Initial-Seed Mutations in Cluster Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a39/
%G en
%F SIGMA_2019_15_a39
Shogo Fujiwara; Yasuaki Gyoda. Duality between Final-Seed and Initial-Seed Mutations in Cluster Algebras. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a39/

[1] Buan A. B., Marsh R., Reineke M., Reiten I., Todorov G., “Tilting theory and cluster combinatorics”, Adv. Math., 204 (2006), 572–618, arXiv: math.RT/0402054 | DOI | MR | Zbl

[2] Cao P., Li F., Uniformly column sign-coherence and the existence of maximal green sequences, arXiv: 1712.00973

[3] Fock V. V., Goncharov A. B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI | MR | Zbl

[4] Fomin S., Shapiro M., Thurston D., “Cluster algebras and triangulated surfaces. I Cluster complexes”, Acta Math., 201 (2008), 83–146, arXiv: math.RA/0608367 | DOI | MR | Zbl

[5] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl

[6] Fomin S., Zelevinsky A., “Cluster algebras. IV Coefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0602259 | DOI | MR | Zbl

[7] Gross M., Hacking P., Keel S., Kontsevich M., “Canonical bases for cluster algebras”, J. Amer. Math. Soc., 31 (2018), 497–608, arXiv: 1411.1394 | DOI | MR | Zbl

[8] Nakanishi T., Zelevinsky A., “On tropical dualities in cluster algebras”, Algebraic Groups and Quantum Groups, Contemp. Math., 565, Amer. Math. Soc., Providence, RI, 2012, 217–226, arXiv: 1101.3736 | DOI | MR | Zbl

[9] Reading N., Stella S., “Initial-seed recursions and dualities for $d$-vectors”, Pacific J. Math., 293 (2018), 179–206, arXiv: 1409.4723 | DOI | MR | Zbl