@article{SIGMA_2019_15_a38,
author = {Daniele Alessandrini},
title = {Higgs {Bundles} and {Geometric} {Structures} on {Manifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a38/}
}
Daniele Alessandrini. Higgs Bundles and Geometric Structures on Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a38/
[1] Alessandrini D., Collier B., “The geometry of maximal components of the ${\rm PSp}(4,{\mathbb R})$ character variety”, Geom. Topol. (to appear) , arXiv: 1708.05361
[2] Alessandrini D., Li Q., “AdS 3-manifolds and Higgs bundles”, Proc. Amer. Math. Soc., 146 (2018), 845–860, arXiv: 1510.07745 | DOI | MR | Zbl
[3] Alessandrini D., Li Q., The nilpotent cone for ${\rm PSL}(2,{\mathbb C})$-Higgs bundles, in preparation
[4] Alessandrini D., Li Q., Projections from flags manifolds to the hyperbolic plane, in preparation
[5] Alessandrini D., Li Q., Projective structures with (quasi-)Hitchin holonomy, in preparation
[6] Alessandrini D., Maloni S., Wienhard A., The geometry of quasi-Hitchin symplectic representations, in preparation
[7] Baba S., “$2\pi$-grafting and complex projective structures, I”, Geom. Topol., 19 (2015), 3233–3287, arXiv: 1011.5051 | DOI | MR | Zbl
[8] Baba S., “$2\pi$-grafting and complex projective structures with generic holonomy”, Geom. Funct. Anal., 27 (2017), 1017–1069, arXiv: 1307.2310 | DOI | MR | Zbl
[9] Baraglia D., ${G}_2$ geometry and integrable systems, Ph.D. Thesis, University of Oxford, 2009, arXiv: 1002.1767
[10] Baues O., “The deformation of flat affine structures on the two-torus”, Handbook of Teichmüller Theory, v. IV, IRMA Lect. Math. Theor. Phys., 19, Eur. Math. Soc., Zürich, 2014, 461–537, arXiv: 1112.3263 | DOI | MR | Zbl
[11] Choi S., Goldman W. M., “Convex real projective structures on closed surfaces are closed”, Proc. Amer. Math. Soc., 118 (1993), 657–661 | DOI | MR | Zbl
[12] Choi S., Goldman W. M., “The classification of real projective structures on compact surfaces”, Bull. Amer. Math. Soc. (N.S.), 34 (1997), 161–171 | DOI | MR | Zbl
[13] Collier B., Li Q., “Asymptotics of Higgs bundles in the Hitchin component”, Adv. Math., 307 (2017), 488–558, arXiv: 1405.1106 | DOI | MR | Zbl
[14] Collier B., Tholozan N., Toulisse J., “The geometry of maximal representations of surface groups into ${\rm SO}(2,n)$”, Duke Math. J. (to appear) , arXiv: 1702.08799
[15] Dumas D., Sanders A., Geometry of compact complex manifolds associated to generalized quasi-Fuchsian representations, arXiv: 1704.01091
[16] Fock V., Goncharov A., “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci., 2006, 1–211, arXiv: math.AG/0311149 | DOI | MR | Zbl
[17] Gallo D., Kapovich M., Marden A., “The monodromy groups of {S}chwarzian equations on closed Riemann surfaces”, Ann. of Math., 151 (2000), 625–704 | DOI | MR | Zbl
[18] Goldman W. M., Discontinuous groups and the Euler class, Ph.D. Thesis, University of California, Berkeley, 1980 | MR
[19] Goldman W. M., Geometric structures and varieties of representations, https://www.math.stonybrook.edu/m̃lyubich/Archive/Geometry/Hyperbolic | MR
[20] Goldman W. M., “Projective structures with Fuchsian holonomy”, J. Differential Geom., 25 (1987), 297–326 | DOI | MR | Zbl
[21] Goldman W. M., “Convex real projective structures on compact surfaces”, J. Differential Geom., 31 (1990), 791–845 | DOI | MR | Zbl
[22] Gromov M., “Hyperbolic groups”, Essays in Group Theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75–263 | DOI | MR
[23] Guichard O., Wienhard A., “Convex foliated projective structures and the Hitchin component for ${\rm PSL}_4(R)$”, Duke Math. J., 144 (2008), 381–445, arXiv: math.DG/0702184 | DOI | MR | Zbl
[24] Guichard O., Wienhard A., “Anosov representations: domains of discontinuity and applications”, Invent. Math., 190 (2012), 357–438, arXiv: 1108.0733 | DOI | MR | Zbl
[25] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl
[26] Hitchin N. J., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl
[27] Hitchin N. J., “Lie groups and Teichmüller space”, Topology, 31 (1992), 449–473 | DOI | MR | Zbl
[28] Humphreys J. E., Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer-Verlag, New York–Heidelberg, 1975 | DOI | MR | Zbl
[29] Kapovich M., Leeb B., Porti J., “Dynamics on flag manifolds: domains of proper discontinuity and cocompactness”, Geom. Topol., 22 (2018), 157–234, arXiv: 1306.3837 | DOI | MR | Zbl
[30] Labourie F., “Anosov flows, surface groups and curves in projective space”, Invent. Math., 165 (2006), 51–114, arXiv: math.DG/0401230 | DOI | MR | Zbl
[31] Labourie F., “Flat projective structures on surfaces and cubic holomorphic differentials”, Pure Appl. Math. Q, 3 (2007), 1057–1099, arXiv: math.DG/0611250 | DOI | MR | Zbl
[32] Labourie F., “Cross ratios, Anosov representations and the energy functional on Teichmüller space”, Ann. Sci. Éc. Norm. Supér. (4), 41 (2008), 437–469, arXiv: math.DG/0512070 | DOI | MR
[33] Loftin J. C., “Affine spheres and convex $\mathbb{RP}^n$-manifolds”, Amer. J. Math., 123 (2001), 255–274 | DOI | MR | Zbl
[34] Sampson J. H., “Some properties and applications of harmonic mappings”, Ann. Sci. École Norm. Sup. (4), 11 (1978), 211–228 | DOI | MR | Zbl
[35] Sanders A. M., Minimal surfaces, hyperbolic 3-manifolds, and related deformation spaces, Ph.D. Thesis, University of Maryland, College Park, 2013 | MR | Zbl
[36] Serre J.-P., Lie algebras and Lie groups, Lecture Notes in Math., 1500, Springer-Verlag, Berlin, 2006 | DOI | MR
[37] Tholozan N., “Dominating surface group representations and deforming closed anti-de Sitter 3-manifolds”, Geom. Topol., 21 (2017), 193–214, arXiv: 1403.7479 | DOI | MR | Zbl
[38] Tholozan N., “The volume of complete anti-de Sitter 3-manifolds”, J. Lie Theory, 28 (2018), 619–642, arXiv: 1509.04178 | MR | Zbl
[39] Thurston W. P., Three-dimensional geometry and topology, v. 1, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997 | MR | Zbl
[40] Toledo D., “Representations of surface groups in complex hyperbolic space”, J. Differential Geom., 29 (1989), 125–133 | DOI | MR | Zbl
[41] Uhlenbeck K. K., “Closed minimal surfaces in hyperbolic $3$-manifolds”, Seminar on Minimal Submanifolds, Ann. of Math. Stud., 103, Princeton University Press, Princeton, NJ, 1983, 147–168 | MR
[42] Wolf M., “The Teichmüller theory of harmonic maps”, J. Differential Geom., 29 (1989), 449–479 | DOI | MR | Zbl