The Laurent Extension of Quantum Plane: a Complete List of $U_q(\mathfrak{sl}_2)$-Symmetries
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work finishes a classification of $U_q(\mathfrak{sl}_2)$-symmetries on the Laurent extension $\mathbb{C}_q\big[x^{\pm 1},y^{\pm 1}\big]$ of the quantum plane. After reproducing the partial results of a previous paper of the author related to symmetries with non-trivial action of the Cartan generator(s) of $U_q(\mathfrak{sl}_2)$ and the generic symmetries, a complete collection of non-generic symmetries is presented. Together, these collections constitute a complete list of $U_q(\mathfrak{sl}_2)$-symmetries on $\mathbb{C}_q\big[x^{\pm 1},y^{\pm 1}\big]$.
Keywords: quantum universal enveloping algebra, Hopf algebra, quantum symmetry, weight.
Mots-clés : Laurent polynomial
@article{SIGMA_2019_15_a37,
     author = {Sergey Sinel'shchikov},
     title = {The {Laurent} {Extension} of {Quantum} {Plane:} a {Complete} {List} of $U_q(\mathfrak{sl}_2)${-Symmetries}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a37/}
}
TY  - JOUR
AU  - Sergey Sinel'shchikov
TI  - The Laurent Extension of Quantum Plane: a Complete List of $U_q(\mathfrak{sl}_2)$-Symmetries
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a37/
LA  - en
ID  - SIGMA_2019_15_a37
ER  - 
%0 Journal Article
%A Sergey Sinel'shchikov
%T The Laurent Extension of Quantum Plane: a Complete List of $U_q(\mathfrak{sl}_2)$-Symmetries
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a37/
%G en
%F SIGMA_2019_15_a37
Sergey Sinel'shchikov. The Laurent Extension of Quantum Plane: a Complete List of $U_q(\mathfrak{sl}_2)$-Symmetries. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a37/

[1] Abe E., Hopf algebras, Cambridge Tracts in Mathematics, 74, Cambridge University Press, Cambridge–New York, 1980 | MR | Zbl

[2] Alev J., Dumas F., “Rigidité des plongements des quotients primitifs minimaux de $U_q(\mathfrak{sl}(2))$ dans l'algèbre quantique de Weyl–Hayashi”, Nagoya Math. J., 143 (1996), 119–146 | DOI | MR | Zbl

[3] Duplij S., Hong Y., Li F., “$U_q(\mathfrak{sl}(m+1))$-module algebra structures on the coordinate algebra of a quantum vector space”, J. Lie Theory, 25 (2015) | MR | Zbl

[4] Duplij S., Sinel'shchikov S., “Classification of $U_q(\mathfrak{sl}_2)$-module algebra structures on the quantum plane”, J. Math. Phys. Anal. Geom., 6 (2010), 406–430, arXiv: 0905.1719 | MR | Zbl

[5] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[6] Kirkman E., Procesi C., Small L., “A $q$-analog for the Virasoro algebra”, Comm. Algebra, 22 (1994), 3755–3774 | DOI | MR | Zbl

[7] Park H. G., Lee J., Choi S. H., Chen X. Q., Nam K.-B., “Automorphism groups of some algebras”, Sci. China Ser. A, 52 (2009), 323–328 | DOI | MR | Zbl

[8] Sinel'shchikov S., “Generic symmetries of the Laurent extension of quantum plane”, J. Math. Phys. Anal. Geom., 11 (2015), 333–358, arXiv: 1410.8074 | DOI | MR | Zbl

[9] Sweedler M. E., Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969 | MR | Zbl