Mots-clés : Poisson algebra, conformal algebra.
@article{SIGMA_2019_15_a36,
author = {Allan P. Fordy and Qing Huang},
title = {Generalised {Darboux{\textendash}Koenigs} {Metrics} and {3-Dimensional} {Superintegrable} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a36/}
}
TY - JOUR AU - Allan P. Fordy AU - Qing Huang TI - Generalised Darboux–Koenigs Metrics and 3-Dimensional Superintegrable Systems JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a36/ LA - en ID - SIGMA_2019_15_a36 ER -
Allan P. Fordy; Qing Huang. Generalised Darboux–Koenigs Metrics and 3-Dimensional Superintegrable Systems. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a36/
[1] Ballesteros A., Enciso A., Herranz F. J., Ragnisco O., “Superintegrability on $N$-dimensional curved spaces: central potentials, centrifugal terms and monopoles”, Ann. Physics, 324 (2009), 1219–1233, arXiv: 0812.1882 | DOI | MR | Zbl
[2] Ballesteros A., Enciso A., Herranz F. J., Ragnisco O., Riglioni D., “Quantum mechanics on spaces of nonconstant curvature: the oscillator problem and superintegrability”, Ann. Physics, 326 (2011), 2053–2073, arXiv: 1102.5494 | DOI | MR | Zbl
[3] Dubrovin B. A., Fomenko A. T., Novikov S. P., Modern geometry – methods and applications, v. 1–3, Springer-Verlag, New York, 1984 | MR | Zbl
[4] Escobar-Ruiz M. A., Miller Jr. W., “Toward a classification of semidegenerate 3D superintegrable systems”, J. Phys. A: Math. Theor., 50 (2017), 095203, 22 pp., arXiv: 1611.02977 | DOI | MR | Zbl
[5] Fordy A. P., “A Kaluza–Klein reduction of super-integrable systems”, J. Geom. Phys., 131 (2018), 210–219, arXiv: 1801.02981 | DOI | MR | Zbl
[6] Fordy A. P., First integrals from conformal symmetries: Darboux–Koenigs metrics and beyond, arXiv: 1804.06904
[7] Fordy A. P., Huang Q., “Poisson algebras and 3{D} superintegrable {H}amiltonian systems”, SIGMA, 14 (2018), 022, 37 pp., arXiv: 1708.07024 | DOI | MR | Zbl
[8] Gilmore R., Lie groups, Lie algebras, and some of their applications, Wiley, New York, 1974 | MR | Zbl
[9] Kalnins E. G., Kress J. M., Miller Jr. W., Winternitz P., “Superintegrable systems in Darboux spaces”, J. Math. Phys., 44 (2003), 5811–5848, arXiv: math-ph/0307039 | DOI | MR | Zbl
[10] Kalnins E. G., Kress J. M., Winternitz P., “Superintegrability in a two-dimensional space of nonconstant curvature”, J. Math. Phys., 43 (2002), 970–983, arXiv: math-ph/0108015 | DOI | MR | Zbl
[11] Koenigs G. X. P., “Sur les géodésiques a integrales quadratiques”, Le{ c}ons sur la théorie générale des surfaces, v. 4, ed. J.G. Darboux, Chelsea Publishing, New York, 1972, 368–404 | MR
[12] Kruglikov B., The D., “The gap phenomenon in parabolic geometries”, J. Reine Angew. Math., 723 (2017), 153–215, arXiv: 1303.1307 | DOI | MR | Zbl
[13] Matveev V. S., Shevchishin V. V., “Two-dimensional superintegrable metrics with one linear and one cubic integral”, J. Geom. Phys., 61 (2011), 1353–1377, arXiv: 1010.4699 | DOI | MR | Zbl
[14] Miller Jr. W., Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl
[15] Valent G., “Superintegrable models on Riemannian surfaces of revolution with integrals of any integer degree (I)”, Regul. Chaotic Dyn., 22 (2017), 319–352, arXiv: 1703.10870 | DOI | MR | Zbl