Generalised Darboux–Koenigs Metrics and 3-Dimensional Superintegrable Systems
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Darboux–Koenigs metrics in 2D are an important class of conformally flat, non-constant curvature metrics with a single Killing vector and a pair of quadratic Killing tensors. In [arXiv:1804.06904] it was shown how to derive these by using the conformal symmetries of the 2D Euclidean metric. In this paper we consider the conformal symmetries of the 3D Euclidean metric and similarly derive a large family of conformally flat metrics possessing between 1 and 3 Killing vectors (and therefore not constant curvature), together with a number of quadratic Killing tensors. We refer to these as generalised Darboux–Koenigs metrics. We thus construct multi-parameter families of super-integrable systems in 3 degrees of freedom. Restricting the parameters increases the isometry algebra, which enables us to fully determine the Poisson algebra of first integrals. This larger algebra of isometries is then used to reduce from 3 to 2 degrees of freedom, obtaining Darboux–Koenigs kinetic energies with potential functions, which are specific cases of the known super-integrable potentials.
Keywords: Darboux–Koenigs metrics, Hamiltonian system, super-integrability
Mots-clés : Poisson algebra, conformal algebra.
@article{SIGMA_2019_15_a36,
     author = {Allan P. Fordy and Qing Huang},
     title = {Generalised {Darboux{\textendash}Koenigs} {Metrics} and {3-Dimensional} {Superintegrable} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a36/}
}
TY  - JOUR
AU  - Allan P. Fordy
AU  - Qing Huang
TI  - Generalised Darboux–Koenigs Metrics and 3-Dimensional Superintegrable Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a36/
LA  - en
ID  - SIGMA_2019_15_a36
ER  - 
%0 Journal Article
%A Allan P. Fordy
%A Qing Huang
%T Generalised Darboux–Koenigs Metrics and 3-Dimensional Superintegrable Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a36/
%G en
%F SIGMA_2019_15_a36
Allan P. Fordy; Qing Huang. Generalised Darboux–Koenigs Metrics and 3-Dimensional Superintegrable Systems. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a36/

[1] Ballesteros A., Enciso A., Herranz F. J., Ragnisco O., “Superintegrability on $N$-dimensional curved spaces: central potentials, centrifugal terms and monopoles”, Ann. Physics, 324 (2009), 1219–1233, arXiv: 0812.1882 | DOI | MR | Zbl

[2] Ballesteros A., Enciso A., Herranz F. J., Ragnisco O., Riglioni D., “Quantum mechanics on spaces of nonconstant curvature: the oscillator problem and superintegrability”, Ann. Physics, 326 (2011), 2053–2073, arXiv: 1102.5494 | DOI | MR | Zbl

[3] Dubrovin B. A., Fomenko A. T., Novikov S. P., Modern geometry – methods and applications, v. 1–3, Springer-Verlag, New York, 1984 | MR | Zbl

[4] Escobar-Ruiz M. A., Miller Jr. W., “Toward a classification of semidegenerate 3D superintegrable systems”, J. Phys. A: Math. Theor., 50 (2017), 095203, 22 pp., arXiv: 1611.02977 | DOI | MR | Zbl

[5] Fordy A. P., “A Kaluza–Klein reduction of super-integrable systems”, J. Geom. Phys., 131 (2018), 210–219, arXiv: 1801.02981 | DOI | MR | Zbl

[6] Fordy A. P., First integrals from conformal symmetries: Darboux–Koenigs metrics and beyond, arXiv: 1804.06904

[7] Fordy A. P., Huang Q., “Poisson algebras and 3{D} superintegrable {H}amiltonian systems”, SIGMA, 14 (2018), 022, 37 pp., arXiv: 1708.07024 | DOI | MR | Zbl

[8] Gilmore R., Lie groups, Lie algebras, and some of their applications, Wiley, New York, 1974 | MR | Zbl

[9] Kalnins E. G., Kress J. M., Miller Jr. W., Winternitz P., “Superintegrable systems in Darboux spaces”, J. Math. Phys., 44 (2003), 5811–5848, arXiv: math-ph/0307039 | DOI | MR | Zbl

[10] Kalnins E. G., Kress J. M., Winternitz P., “Superintegrability in a two-dimensional space of nonconstant curvature”, J. Math. Phys., 43 (2002), 970–983, arXiv: math-ph/0108015 | DOI | MR | Zbl

[11] Koenigs G. X. P., “Sur les géodésiques a integrales quadratiques”, Le{ c}ons sur la théorie générale des surfaces, v. 4, ed. J.G. Darboux, Chelsea Publishing, New York, 1972, 368–404 | MR

[12] Kruglikov B., The D., “The gap phenomenon in parabolic geometries”, J. Reine Angew. Math., 723 (2017), 153–215, arXiv: 1303.1307 | DOI | MR | Zbl

[13] Matveev V. S., Shevchishin V. V., “Two-dimensional superintegrable metrics with one linear and one cubic integral”, J. Geom. Phys., 61 (2011), 1353–1377, arXiv: 1010.4699 | DOI | MR | Zbl

[14] Miller Jr. W., Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl

[15] Valent G., “Superintegrable models on Riemannian surfaces of revolution with integrals of any integer degree (I)”, Regul. Chaotic Dyn., 22 (2017), 319–352, arXiv: 1703.10870 | DOI | MR | Zbl