@article{SIGMA_2019_15_a33,
author = {El\.zbieta Adamus and Teresa Crespo and Zbigniew Hajto},
title = {Jacobian {Conjecture} via {Differential} {Galois} {Theory}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a33/}
}
TY - JOUR AU - Elżbieta Adamus AU - Teresa Crespo AU - Zbigniew Hajto TI - Jacobian Conjecture via Differential Galois Theory JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a33/ LA - en ID - SIGMA_2019_15_a33 ER -
Elżbieta Adamus; Teresa Crespo; Zbigniew Hajto. Jacobian Conjecture via Differential Galois Theory. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a33/
[1] Adamus E., Bogdan P., Crespo T., Hajto Z., “An effective study of polynomial maps”, J. Algebra Appl., 16 (2017), 1750141, 13 pp., arXiv: 1506.01654 | DOI | MR | Zbl
[2] Adamus E., Bogdan P., Crespo T., Hajto Z., “Pascal finite polynomial automorphisms”, J. Algebra Appl. (to appear) | DOI
[3] Adamus E., Bogdan P., Hajto Z., “An effective approach to Picard–Vessiot theory and the Jacobian conjecture”, Schedae Informaticae, 26 (2017), 49–59, arXiv: 1506.01662 | DOI
[4] Bass H., Connell E. H., Wright D., “The Jacobian conjecture: reduction of degree and formal expansion of the inverse”, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 287–330 | DOI | MR | Zbl
[5] Campbell L. A., “A condition for a polynomial map to be invertible”, Math. Ann., 205 (1973), 243–248 | DOI | MR
[6] Crespo T., Hajto Z., “Picard–Vessiot theory and the Jacobian problem”, Israel J. Math., 186 (2011), 401–406 | DOI | MR | Zbl
[7] de Bondt M., “Quasi-translations and counterexamples to the homogeneous dependence problem”, Proc. Amer. Math. Soc., 134 (2006), 2849–2856 | DOI | MR | Zbl
[8] de Bondt M., Homogeneous Keller maps, Ph.D. Thesis, Radboud University Nijmegen, 2007 http://webdoc.ubn.ru.nl/mono/b/bondt_m_de/homokema.pdf
[9] Keller O.-H., “Ganze Cremona-Transformationen”, Monatsh. Math. Phys., 47 (1939), 299–306 | DOI | MR
[10] Kovacic J. J., “The differential Galois theory of strongly normal extensions”, Trans. Amer. Math. Soc., 355 (2003), 4475–4522 | DOI | MR | Zbl
[11] Kovacic J. J., “Geometric characterization of strongly normal extensions”, Trans. Amer. Math. Soc., 358 (2006), 4135–4157 | DOI | MR | Zbl
[12] Levelt A. H. M., “Differential Galois theory and tensor products”, Indag. Math. (N.S.), 1 (1990), 439–449 | DOI | MR | Zbl
[13] Smale S., “Mathematical problems for the next century”, Math. Intelligencer, 20 (1998), 7–15 | DOI | MR | Zbl
[14] van den Essen A., “Polynomial automorphisms and the {J}acobian conjecture”, Algèbre Non Commutative, Groupes Quantiques et Invariants (Reims, 1995), v. 2, Sémin. Congr., Soc. Math. France, Paris, 1997, 55–81 | MR
[15] van den Essen A., Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, 190, Birkhäuser Verlag, Basel, 2000 | DOI | MR | Zbl
[16] Wang S. S.-S., “A Jacobian criterion for separability”, J. Algebra, 65 (1980), 453–494 | DOI | MR | Zbl
[17] Yagzhev A. V., “Keller's problem”, Siberian Math. J., 21 (1980), 747–754 | DOI | MR | Zbl