@article{SIGMA_2019_15_a31,
author = {Takanori Ayano and Victor M. Buchstaber},
title = {Construction of {Two} {Parametric} {Deformation} of {KdV-Hierarchy} and {Solution} in {Terms} of {Meromorphic} {Functions} on the {Sigma} {Divisor} of a {Hyperelliptic} {Curve} of {Genus} 3},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a31/}
}
TY - JOUR AU - Takanori Ayano AU - Victor M. Buchstaber TI - Construction of Two Parametric Deformation of KdV-Hierarchy and Solution in Terms of Meromorphic Functions on the Sigma Divisor of a Hyperelliptic Curve of Genus 3 JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a31/ LA - en ID - SIGMA_2019_15_a31 ER -
%0 Journal Article %A Takanori Ayano %A Victor M. Buchstaber %T Construction of Two Parametric Deformation of KdV-Hierarchy and Solution in Terms of Meromorphic Functions on the Sigma Divisor of a Hyperelliptic Curve of Genus 3 %J Symmetry, integrability and geometry: methods and applications %D 2019 %V 15 %U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a31/ %G en %F SIGMA_2019_15_a31
Takanori Ayano; Victor M. Buchstaber. Construction of Two Parametric Deformation of KdV-Hierarchy and Solution in Terms of Meromorphic Functions on the Sigma Divisor of a Hyperelliptic Curve of Genus 3. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a31/
[1] Ayano T., Buchstaber V. M., “The field of meromorphic functions on a sigma divisor of a hyperelliptic curve of genus 3 and applications”, Funct. Anal. Appl., 51 (2017), 162–176, arXiv: 1811.05806 | DOI | MR | Zbl
[2] Baker H. F., “On the hyperelliptic sigma functions”, Amer. J. Math., 20 (1898), 301–384 | DOI | MR | Zbl
[3] Baker H. F., “On a system of differential equations leading to periodic functions”, Acta Math., 27 (1903), 135–156 | DOI | MR | Zbl
[4] Baker H. F., An introduction to the theory of multiply periodic functions, Cambridge University Press, Cambridge, 1907 http://name.umdl.umich.edu/ACR0014.0001.001 | Zbl
[5] Buchstaber V. M., “Polynomial dynamical systems and the Korteweg–de Vries equation”, Proc. Steklov Inst. Math., 294 (2016), 176–200, arXiv: 1605.04061 | DOI | MR | Zbl
[6] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Rational analogs of Abelian functions”, Funct. Anal. Appl., 33 (1999), 83–94 | DOI | MR | Zbl
[7] Buchstaber V. M., Enolskii V. Z., Leykin D. V., Multi-dimensional sigma-functions, arXiv: 1208.0990
[8] Buchstaber V. M., Enolskii V. Z., Leykin D. V., Multi-variable sigma-functions: old and new results, arXiv: 1810.11079
[9] Buchstaber V. M., Mikhailov A. V., “Infinite-dimensional Lie algebras determined by the space of symmetric squares of hyperelliptic curves”, Funct. Anal. Appl., 51 (2017), 2–21 | DOI | MR | Zbl
[10] Buchstaber V. M., Mikhailov A. V., The space of symmetric squares of hyperelliptic curves and integrable Hamiltonian polynomial systems on $\mathbb{R}^4$, arXiv: 1710.00866
[11] Matsutani S., “Hyperelliptic solutions of {K}d{V} and {KP} equations: re-evaluation of Baker's study on hyperelliptic sigma functions,”, J. Phys. A: Math. Gen., 34 (2001), 4721–4732, arXiv: nlin.SI/0007001 | DOI | MR | Zbl
[12] Matsutani S., “Relations of al functions over subvarieties in a hyperelliptic Jacobian”, Cubo, 7:3 (2005), 75–85, arXiv: nlin.SI/0202035 | MR | Zbl
[13] Nakayashiki A., “On algebraic expressions of sigma functions for $(n,s)$ curves”, Asian J. Math., 14 (2010), 175–211, arXiv: 0803.2083 | DOI | MR