Construction of Two Parametric Deformation of KdV-Hierarchy and Solution in Terms of Meromorphic Functions on the Sigma Divisor of a Hyperelliptic Curve of Genus 3
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Buchstaber and Mikhailov introduced the polynomial dynamical systems in $\mathbb{C}^4$ with two polynomial integrals on the basis of commuting vector fields on the symmetric square of hyperelliptic curves. In our previous paper, we constructed the field of meromorphic functions on the sigma divisor of hyperelliptic curves of genus 3 and solutions of the systems for $g=3$ by these functions. In this paper, as an application of our previous results, we construct two parametric deformation of the KdV-hierarchy. This new system is integrated in the meromorphic functions on the sigma divisor of hyperelliptic curves of genus 3. In Section 8 of our previous paper [Funct. Anal. Appl. 51 (2017), 162–176], there are miscalculations. In appendix of this paper, we correct the errors.
Keywords: Abelian functions, hyperelliptic sigma functions, polynomial dynamical systems, commuting vector fields, KdV-hierarchy.
@article{SIGMA_2019_15_a31,
     author = {Takanori Ayano and Victor M. Buchstaber},
     title = {Construction of {Two} {Parametric} {Deformation} of {KdV-Hierarchy} and {Solution} in {Terms} of {Meromorphic} {Functions} on the {Sigma} {Divisor} of a {Hyperelliptic} {Curve} of {Genus} 3},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a31/}
}
TY  - JOUR
AU  - Takanori Ayano
AU  - Victor M. Buchstaber
TI  - Construction of Two Parametric Deformation of KdV-Hierarchy and Solution in Terms of Meromorphic Functions on the Sigma Divisor of a Hyperelliptic Curve of Genus 3
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a31/
LA  - en
ID  - SIGMA_2019_15_a31
ER  - 
%0 Journal Article
%A Takanori Ayano
%A Victor M. Buchstaber
%T Construction of Two Parametric Deformation of KdV-Hierarchy and Solution in Terms of Meromorphic Functions on the Sigma Divisor of a Hyperelliptic Curve of Genus 3
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a31/
%G en
%F SIGMA_2019_15_a31
Takanori Ayano; Victor M. Buchstaber. Construction of Two Parametric Deformation of KdV-Hierarchy and Solution in Terms of Meromorphic Functions on the Sigma Divisor of a Hyperelliptic Curve of Genus 3. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a31/

[1] Ayano T., Buchstaber V. M., “The field of meromorphic functions on a sigma divisor of a hyperelliptic curve of genus 3 and applications”, Funct. Anal. Appl., 51 (2017), 162–176, arXiv: 1811.05806 | DOI | MR | Zbl

[2] Baker H. F., “On the hyperelliptic sigma functions”, Amer. J. Math., 20 (1898), 301–384 | DOI | MR | Zbl

[3] Baker H. F., “On a system of differential equations leading to periodic functions”, Acta Math., 27 (1903), 135–156 | DOI | MR | Zbl

[4] Baker H. F., An introduction to the theory of multiply periodic functions, Cambridge University Press, Cambridge, 1907 http://name.umdl.umich.edu/ACR0014.0001.001 | Zbl

[5] Buchstaber V. M., “Polynomial dynamical systems and the Korteweg–de Vries equation”, Proc. Steklov Inst. Math., 294 (2016), 176–200, arXiv: 1605.04061 | DOI | MR | Zbl

[6] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Rational analogs of Abelian functions”, Funct. Anal. Appl., 33 (1999), 83–94 | DOI | MR | Zbl

[7] Buchstaber V. M., Enolskii V. Z., Leykin D. V., Multi-dimensional sigma-functions, arXiv: 1208.0990

[8] Buchstaber V. M., Enolskii V. Z., Leykin D. V., Multi-variable sigma-functions: old and new results, arXiv: 1810.11079

[9] Buchstaber V. M., Mikhailov A. V., “Infinite-dimensional Lie algebras determined by the space of symmetric squares of hyperelliptic curves”, Funct. Anal. Appl., 51 (2017), 2–21 | DOI | MR | Zbl

[10] Buchstaber V. M., Mikhailov A. V., The space of symmetric squares of hyperelliptic curves and integrable Hamiltonian polynomial systems on $\mathbb{R}^4$, arXiv: 1710.00866

[11] Matsutani S., “Hyperelliptic solutions of {K}d{V} and {KP} equations: re-evaluation of Baker's study on hyperelliptic sigma functions,”, J. Phys. A: Math. Gen., 34 (2001), 4721–4732, arXiv: nlin.SI/0007001 | DOI | MR | Zbl

[12] Matsutani S., “Relations of al functions over subvarieties in a hyperelliptic Jacobian”, Cubo, 7:3 (2005), 75–85, arXiv: nlin.SI/0202035 | MR | Zbl

[13] Nakayashiki A., “On algebraic expressions of sigma functions for $(n,s)$ curves”, Asian J. Math., 14 (2010), 175–211, arXiv: 0803.2083 | DOI | MR