@article{SIGMA_2019_15_a3,
author = {Pier Giovanni Bissiri and Valdir A. Menegatto and Emilio Porcu},
title = {Relations between {Schoenberg} {Coefficients} on {Real} and {Complex} {Spheres} of {Different} {Dimensions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a3/}
}
TY - JOUR AU - Pier Giovanni Bissiri AU - Valdir A. Menegatto AU - Emilio Porcu TI - Relations between Schoenberg Coefficients on Real and Complex Spheres of Different Dimensions JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a3/ LA - en ID - SIGMA_2019_15_a3 ER -
%0 Journal Article %A Pier Giovanni Bissiri %A Valdir A. Menegatto %A Emilio Porcu %T Relations between Schoenberg Coefficients on Real and Complex Spheres of Different Dimensions %J Symmetry, integrability and geometry: methods and applications %D 2019 %V 15 %U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a3/ %G en %F SIGMA_2019_15_a3
Pier Giovanni Bissiri; Valdir A. Menegatto; Emilio Porcu. Relations between Schoenberg Coefficients on Real and Complex Spheres of Different Dimensions. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a3/
[1] Abramowitz M., Stegun I. A., Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1966 | MR
[2] Arafat A., Gregori P., Porcu E., Schoenberg coefficients and curvature at the origin of continuous isotropic positive definite kernels on spheres, arXiv: 1807.02363
[3] Baldi P., Marinucci D., “Some characterizations of the spherical harmonics coefficients for isotropic random fields”, Statist. Probab. Lett., 77 (2007), 490–496, arXiv: math.PR/0606709 | DOI | MR | Zbl
[4] Barbosa V. S., Menegatto V. A., “Strict positive definiteness on products of compact two-point homogeneous spaces”, Integral Transforms Spec. Funct., 28 (2017), 56–73, arXiv: 1605.07071 | DOI | MR | Zbl
[5] Beatson R. K., zu Castell W., Xu Y., “A Pólya criterion for (strict) positive-definiteness on the sphere”, IMA J. Numer. Anal., 34 (2014), 550–568, arXiv: 1110.2437 | DOI | MR | Zbl
[6] Berg C., Peron A. P., Porcu E., “Schoenberg's theorem for real and complex Hilbert spheres revisited”, J. Approx. Theory, 228 (2018), 58–78, arXiv: 1701.07214 | DOI | MR | Zbl
[7] Berg C., Porcu E., “From Schoenberg coefficients to Schoenberg functions”, Constr. Approx., 45 (2017), 217–241, arXiv: 1505.05682 | DOI | MR | Zbl
[8] Bingham N. H., “Positive definite functions on spheres”, Proc. Cambridge Philos. Soc., 73 (1973), 145–156 | DOI | MR | Zbl
[9] Chen D., Menegatto V. A., Sun X., “A necessary and sufficient condition for strictly positive definite functions on spheres”, Proc. Amer. Math. Soc., 131 (2003), 2733–2740 | DOI | MR | Zbl
[10] Christakos G., “On certain classes of spatiotemporal random fields with applications to space-time data processing”, IEEE Trans. Systems Man Cybernet., 21 (1991), 861–875 | DOI | MR | Zbl
[11] Christakos G., Modern spatiotemporal geostatistics, Oxford University Press, Inc., New York, 2000
[12] Christakos G., Hristopulos D. T., Bogaert P., “On the physical geometry hypotheses at the basis of spatiotemporal analysis of hydrologic geostatistics”, Adv. Water Resources, 23 (2000), 799–810 | DOI | MR
[13] Christakos G., Papanicolaou V., “Norm-dependent covariance permissibility of weakly homogeneous spatial random fields”, Stoch. Environ. Res. Risk Assess., 14 (2000), 471–478 | DOI
[14] Clarke De la Cerda J., Alegría A., Porcu E., “Regularity properties and simulations of Gaussian random fields on the sphere cross time”, Electron. J. Stat., 12 (2018), 399–426, arXiv: 1611.02851 | DOI | MR | Zbl
[15] Daley D. J., Porcu E., “Dimension walks and Schoenberg spectral measures”, Proc. Amer. Math. Soc., 142 (2014), 1813–1824 | DOI | MR | Zbl
[16] Fiedler J., From Fourier to Gegenbauer: dimension walks on spheres, arXiv: 1303.6856
[17] Gangolli R., “Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters”, Ann. Inst. H. Poincaré Sect. B (N.S.), 3 (1967), 121–226 | MR | Zbl
[18] Gerber F., Mösinger L., Furrer R., “Extending R packages to support 64-bit compiled code: an illustration with spam64 and GIMMS NDVI$_{\rm 3g}$ data”, Comput. Geosci., 104 (2017), 109–119 | DOI
[19] Gneiting T., “Strictly and non-strictly positive definite functions on spheres”, Bernoulli, 19 (2013), 1327–1349, arXiv: 1111.7077 | DOI | MR | Zbl
[20] Guella J. C., Menegatto V. A., “Unitarily invariant strictly positive definite kernels on spheres”, Positivity, 22 (2018), 91–103 | DOI | MR | Zbl
[21] Guella J. C., Menegatto V. A., Peron A. P., “An extension of a theorem of Schoenberg to products of spheres”, Banach J. Math. Anal., 10 (2016), 671–685, arXiv: 1503.08174 | DOI | MR | Zbl
[22] Guella J. C., Menegatto V. A., Peron A. P., “Strictly positive definite kernels on a product of circles”, Positivity, 21 (2017), 329–342, arXiv: 1505.01169 | DOI | MR | Zbl
[23] Guella J. C., Menegatto V. A., Peron A. P., “Strictly positive definite kernels on a product of spheres II”, SIGMA, 12 (2016), 103, 15 pp., arXiv: 1605.09775 | DOI | MR | Zbl
[24] Hannan E. J., Multiple time series, John Wiley and Sons, Inc., New York–London–Sydney, 1970 | MR | Zbl
[25] Hansen L. V., Thorarinsdottir T. L., Ovcharov E., Gneiting T., Richards D., “Gaussian random particles with flexible Hausdorff dimension”, Adv. in Appl. Probab., 47 (2015), 307–327, arXiv: 1502.01750 | DOI | MR | Zbl
[26] Hitczenko M., Stein M. L., “Some theory for anisotropic processes on the sphere”, Stat. Methodol., 9 (2012), 211–227 | DOI | MR | Zbl
[27] Huang C., Zhang H., Robeson S. M., “A simplified representation of the covariance structure of axially symmetric processes on the sphere”, Statist. Probab. Lett., 82 (2012), 1346–1351 | DOI | MR | Zbl
[28] Istas J., “Spherical and hyperbolic fractional Brownian motion”, Electron. Comm. Probab., 10 (2005), 254–262 | DOI | MR | Zbl
[29] Lang A., Schwab C., “Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations”, Ann. Appl. Probab., 25 (2015), 3047–3094, arXiv: 1305.1170 | DOI | MR | Zbl
[30] Leonenko N., Sakhno L., “On spectral representations of tensor random fields on the sphere”, Stoch. Anal. Appl., 30 (2012), 44–66, arXiv: 0912.3389 | DOI | MR | Zbl
[31] Malyarenko A., Invariant random fields on spaces with a group action, Probability and its Applications (New York), Springer, Heidelberg, 2013 | DOI | MR | Zbl
[32] Massa E., Peron A. P., Porcu E., “Positive definite functions on complex spheres and their walks through dimensions”, SIGMA, 13 (2017), 088, 16 pp., arXiv: 1704.01237 | DOI | MR | Zbl
[33] Menegatto V. A., “Strictly positive definite kernels on the Hilbert sphere”, Appl. Anal., 55 (1994), 91–101 | DOI | MR | Zbl
[34] Menegatto V. A., “Strictly positive definite kernels on the circle”, Rocky Mountain J. Math., 25 (1995), 1149–1163 | DOI | MR | Zbl
[35] Menegatto V. A., “Differentiability of bizonal positive definite kernels on complex spheres”, J. Math. Anal. Appl., 412 (2014), 189–199 | DOI | MR | Zbl
[36] Menegatto V. A., Oliveira C. P., Peron A. P., “Strictly positive definite kernels on subsets of the complex plane”, Comput. Math. Appl., 51 (2006), 1233–1250 | DOI | MR | Zbl
[37] Menegatto V. A., Peron A. P., “Positive definite kernels on complex spheres”, J. Math. Anal. Appl., 254 (2001), 219–232 | DOI | MR | Zbl
[38] Møller J., Nielsen M., Porcu E., Rubak E., “Determinantal point process models on the sphere”, Bernoulli, 24 (2018), 1171–1201, arXiv: 1607.03675 | DOI | MR
[39] Porcu E., Alegria A., Furrer R., “Modelling temporally evolving and spatially globally dependent data”, Int. Stat. Rev., 86 (2018), 344–377, arXiv: 1706.09233 | DOI | MR
[40] Porcu E., Bevilacqua M., Genton M. G., “Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere”, J. Amer. Statist. Assoc., 111 (2016), 888–898 | DOI | MR
[41] Schoenberg I. J., “Positive definite functions on spheres”, Duke Math. J., 9 (1942), 96–108 | DOI | MR | Zbl
[42] Trübner M., Ziegel J. F., “Derivatives of isotropic positive definite functions on spheres”, Proc. Amer. Math. Soc., 145 (2017), 3017–3031, arXiv: 1603.06727 | DOI | MR | Zbl
[43] Wünsche A., “Generalized Zernike or disc polynomials”, J. Comput. Appl. Math., 174 (2005), 135–163 | DOI | MR | Zbl
[44] Ziegel J., “Convolution roots and differentiability of isotropic positive definite functions on spheres”, Proc. Amer. Math. Soc., 142 (2014), 2063–2077, arXiv: 1201.5833 | DOI | MR | Zbl