@article{SIGMA_2019_15_a28,
author = {Robert Coquereaux and Jean-Bernard Zuber},
title = {The {Horn} {Problem} for {Real} {Symmetric} and {Quaternionic} {Self-Dual} {Matrices}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a28/}
}
TY - JOUR AU - Robert Coquereaux AU - Jean-Bernard Zuber TI - The Horn Problem for Real Symmetric and Quaternionic Self-Dual Matrices JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a28/ LA - en ID - SIGMA_2019_15_a28 ER -
Robert Coquereaux; Jean-Bernard Zuber. The Horn Problem for Real Symmetric and Quaternionic Self-Dual Matrices. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a28/
[1] Baratta W., SpecialFunctions.nb, The University of Melbourne, 2008 https://researchers.ms.unimelb.edu.au/w̃baratta/
[2] Bauer M., Zuber J.-B., On products of delta distributions and resultants, in preparation
[3] Brézin E., Hikami S., “An extension of the Harish-Chandra–Itzykson–Zuber integral”, Comm. Math. Phys., 235 (2003), 125–137, arXiv: math-ph/0208002 | DOI | MR
[4] Bufetov A., Gorin V., Fourier transform on high-dimensional unitary groups with applications to random tilings, arXiv: 1712.09925
[5] Constantine A. G., “Some non-central distribution problems in multivariate analysis”, Ann. Math. Statist., 34 (1963), 1270–1285 | DOI | MR | Zbl
[6] Coquereaux R., Mathematica package “SymPol\$Package” http://www.cpt.univ-mrs.fr/c̃oque/Computer_programs/index.html
[7] Coquereaux R., McSwiggen C., Zuber J.-B., On {H}orn's problem and its volume function, arXiv: 1904.00752
[8] Coquereaux R., Zuber J.-B., “On some properties of $\rm SU(3)$ fusion coefficients”, Nuclear Phys. B, 912 (2016), 119–150, arXiv: 1605.05864 | DOI | MR | Zbl
[9] Coquereaux R., Zuber J.-B., “From orbital measures to Littlewood–{R}ichardson coefficients and hive polytopes”, Ann. Inst. Henri Poincaré D, 5 (2018), 339–386, arXiv: 1706.02793 | DOI | MR | Zbl
[10] Demmel J., Koev P., “Accurate and efficient evaluation of Schur and Jack functions”, Math. Comp., 75 (2006), 223–239 | DOI | MR | Zbl
[11] Dumitriu I., Edelman A., Shuman G., “MOPS: multivariate orthogonal polynomials (symbolically)”, J. Symbolic Comput., 42 (2007), 587–620, arXiv: math-ph/0409066 | DOI | MR | Zbl
[12] Faraut J., “Horn's problem and Fourier analysis”, Tunis. J. Math., 1 (2019), 585–606 | DOI | MR | Zbl
[13] Féray V., Śniady P., “Zonal polynomials via {S}tanley's coordinates and free cumulants”, J. Algebra, 334 (2011), 338–373, arXiv: 1005.0316 | DOI | MR
[14] Frumkin A., Goldberger A., Diagonals of real symmetric matrices of given spectra as a measure space, arXiv: 1505.06418
[15] Frumkin A., Goldberger A., “On the distribution of the spectrum of the sum of two Hermitian or real symmetric matrices”, Adv. in Appl. Math., 37 (2006), 268–286 | DOI | MR | Zbl
[16] Fulton W., “Eigenvalues, invariant factors, highest weights, and Schubert calculus”, Bull. Amer. Math. Soc., 37 (2000), 209–249, arXiv: math.AG/9908012 | DOI | MR | Zbl
[17] Gel'fand I. M., Shilov G. E., Generalized functions, v. I, Properties and operations, Academic Press, New York–London, 1964 | MR
[18] Gorin V., Marcus A. W., Crystallization of random matrix orbits, arXiv: 1706.07393
[19] Harish-Chandra, “Differential operators on a semisimple Lie algebra”, Amer. J. Math., 79 (1957), 87–120 | DOI | MR | Zbl
[20] Hikami S., Brézin E., “WKB-expansion of the Harish-Chandra–Itzykson–Zuber integral for arbitrary $\beta$”, Progr. Theoret. Phys., 116 (2006), 441–502, arXiv: math-ph/0604041 | DOI | MR | Zbl
[21] Hua L.-K., Harmonic analysis of functions of several complex variables in the classical domains, Amer. Math. Soc., Providence, R.I., 1963 | MR
[22] Itzykson C., Zuber J.-B., “The planar approximation. II”, J. Math. Phys., 21 (1980), 411–421 | DOI | MR | Zbl
[23] James A. T., “Normal multivariate analysis and the orthogonal group”, Ann. Math. Statist., 25 (1954), 40–75 | DOI | MR | Zbl
[24] James A. T., “The distribution of the latent roots of the covariance matrix”, Ann. Math. Statist., 31 (1960), 151–158 | DOI | MR | Zbl
[25] James A. T., “Zonal polynomials of the real positive definite symmetric matrices”, Ann. of Math., 74 (1961), 456–469 | DOI | MR | Zbl
[26] Klyachko A. A., “Stable bundles, representation theory and Hermitian operators”, Selecta Math. (N.S.), 4 (1998), 419–445 | DOI | MR | Zbl
[27] Knutson A., Tao T., “The honeycomb model of ${\rm GL}_n({\mathbb C})$ tensor products. I Proof of the saturation conjecture”, J. Amer. Math. Soc., 12 (1999), 1055–1090, arXiv: math.RT/9807160 | DOI | MR | Zbl
[28] Knutson A., Tao T., “Honeycombs and sums of Hermitian matrices”, Notices Amer. Math. Soc., 48 (2001), 175–186, arXiv: math.RT/0009048 | MR | Zbl
[29] Knutson A., Tao T., Woodward C., “The honeycomb model of ${\rm GL}_n({\mathbb C})$ tensor products. II Puzzles determine facets of the Littlewood–Richardson cone”, J. Amer. Math. Soc., 17 (2004), 19–48, arXiv: math.CO/0107011 | DOI | MR | Zbl
[30] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979 | MR
[31] Mathai A. M., Provost S. B., Hayakawa T., Bilinear forms and zonal polynomials, Lecture Notes in Statistics, 102, Springer-Verlag, New York, 1995 | DOI | MR | Zbl
[32] Okounkov A., Olshanski G., “Shifted Jack polynomials, binomial formula, and applications”, Math. Res. Lett., 4 (1997), 69–78, arXiv: q-alg/9608020 | DOI | MR | Zbl
[33] Stanley R. P., “Some combinatorial properties of Jack symmetric functions”, Adv. Math., 77 (1989), 76–115 | DOI | MR | Zbl
[34] Zuber J.-B., “Horn's problem and Harish-Chandra's integrals. Probability density functions”, Ann. Inst. Henri Poincaré D, 5 (2018), 309–338, arXiv: 1705.01186 | DOI | MR | Zbl