A Short Guide to Orbifold Deconstruction
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of orbifold deconstruction, i.e., the process of recognizing, using only readily available information, whether a given conformal model can be realized as an orbifold, and the identification of the twist group and the original conformal model.
Keywords: conformal symmetry; orbifold models.
@article{SIGMA_2019_15_a26,
     author = {Peter Bantay},
     title = {A {Short} {Guide} to {Orbifold} {Deconstruction}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a26/}
}
TY  - JOUR
AU  - Peter Bantay
TI  - A Short Guide to Orbifold Deconstruction
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a26/
LA  - en
ID  - SIGMA_2019_15_a26
ER  - 
%0 Journal Article
%A Peter Bantay
%T A Short Guide to Orbifold Deconstruction
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a26/
%G en
%F SIGMA_2019_15_a26
Peter Bantay. A Short Guide to Orbifold Deconstruction. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a26/

[1] Bantay P., “Orbifolds and Hopf algebras”, Phys. Lett. B, 245 (1990), 477–479 | DOI | MR

[2] Bantay P., “Orbifolds, Hopf algebras, and the Moonshine”, Lett. Math. Phys., 22 (1991), 187–194 | DOI | MR | Zbl

[3] Bantay P., “Characters and modular properties of permutation orbifolds”, Phys. Lett. B, 419 (1998), 175–178, arXiv: hep-th/9708120 | DOI | MR | Zbl

[4] Bantay P., “Simple current extensions and mapping class group representations”, Internat. J. Modern Phys. A, 13 (1998), 199–207, arXiv: hep-th/9611124 | DOI | MR | Zbl

[5] Bantay P., “Permutation orbifolds”, Nuclear Phys. B, 633 (2002), 365–378, arXiv: hep-th/9910079 | DOI | MR | Zbl

[6] Bantay P., “Symmetric products, permutation orbifolds and discrete torsion”, Lett. Math. Phys., 63 (2003), 209–218, arXiv: hep-th/0004025 | DOI | MR | Zbl

[7] Bantay P., “Character relations and replication identities in 2d conformal field theory”, J. High Energy Phys., 2016:10 (2016), 020, 13 pp., arXiv: 1603.05511 | DOI | MR

[8] Barron K., Dong C., Mason G., “Twisted sectors for tensor product vertex operator algebras associated to permutation groups”, Comm. Math. Phys., 227 (2002), 349–384, arXiv: math.QA/9803118 | DOI | MR | Zbl

[9] Borisov L., Halpern M. B., Schweigert C., “Systematic approach to cyclic orbifolds”, Internat. J. Modern Phys. A, 13 (1998), 125–168, arXiv: hep-th/9701061 | DOI | MR | Zbl

[10] Di Francesco P., Mathieu P., Sénéchal D., Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997 | DOI | MR | Zbl

[11] Dijkgraaf R., Moore G., Verlinde E., Verlinde H., “Elliptic genera of symmetric products and second quantized strings”, Comm. Math. Phys., 185 (1997), 197–209, arXiv: hep-th/9608096 | DOI | MR | Zbl

[12] Dijkgraaf R., Pasquier V., Roche P., “Quasi Hopf algebras, group cohomology and orbifold models”, Nuclear Phys. B Proc. Suppl., 18B (1990), 60–72 | DOI | MR | Zbl

[13] Dijkgraaf R., Vafa C., Verlinde E., Verlinde H., “The operator algebra of orbifold models”, Comm. Math. Phys., 123 (1989), 485–526 | DOI | MR | Zbl

[14] Dixon L., Friedan D., Martinec E., Shenker S., “The conformal field theory of orbifolds”, Nuclear Phys. B, 282 (1987), 13–73 | DOI | MR

[15] Dixon L., Harvey J., Vafa C., Witten E., “Strings on orbifolds”, Nuclear Phys. B, 261 (1985), 678–686 | DOI | MR

[16] Dixon L., Harvey J., Vafa C., Witten E., “Strings on orbifolds. II”, Nuclear Phys. B, 274 (1986), 285–314 | DOI | MR

[17] Dong C., Li H., Mason G., “Modular-invariance of trace functions in orbifold theory and generalized moonshine”, Comm. Math. Phys., 214 (2000), 1–56, arXiv: q-alg/9703016 | DOI | MR | Zbl

[18] Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Pure and Applied Mathematics, 134, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl

[19] Fröhlich J., Fuchs J., Runkel I., Schweigert C., “Correspondences of ribbon categories”, Adv. Math., 199 (2006), 192–329, arXiv: math.CT/0309465 | DOI | MR | Zbl

[20] Fuchs J., Klemm A., Schmidt M. G., “Orbifolds by cyclic permutations in Gepner type superstrings and in the corresponding Calabi–Yau manifolds”, Ann. Physics, 214 (1992), 221–257 | DOI | MR | Zbl

[21] Fuchs J., Schellekens A. N., Schweigert C., “A matrix $S$ for all simple current extensions”, Nuclear Phys. B, 473 (1996), 323–366, arXiv: hep-th/9601078 | DOI | MR | Zbl

[22] Isaacs I. M., Character theory of finite groups, Pure and Applied Mathematics, 69, Academic Press, New York–London, 1976 | MR | Zbl

[23] Kac V., Vertex algebras for beginners, University Lecture Series, 10, Amer. Math. Soc., Providence, RI, 1997 | MR

[24] Kirillov Jr. A., On $G$-equivariant modular categories, arXiv: math.QA/0401119

[25] Klemm A., Schmidt M. G., “Orbifolds by cyclic permutations of tensor product conformal field theories”, Phys. Lett. B, 245 (1990), 53–58 | DOI | MR

[26] Lepowsky J., Li H., Introduction to vertex operator algebras and their representations, Progress in Mathematics, 227, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR | Zbl

[27] Lux K., Pahlings H., Representations of groups. A computational approach, Cambridge Studies in Advanced Mathematics, 124, Cambridge University Press, Cambridge, 2010 | DOI | MR | Zbl

[28] Serre J.-P., Linear representations of finite groups, Graduate Texts in Mathematics, 42, Springer-Verlag, New York–Heidelberg, 1977 | DOI | MR | Zbl

[29] Zhu Y., “Modular invariance of characters of vertex operator algebras”, J. Amer. Math. Soc., 9 (1996), 237–302 | DOI | MR | Zbl