Contravariant Form on Tensor Product of Highest Weight Modules
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a criterion for complete reducibility of tensor product $V\otimes Z$ of two irreducible highest weight modules $V$ and $Z$ over a classical or quantum semi-simple group in terms of a contravariant symmetric bilinear form on $V\otimes Z$. This form is the product of the canonical contravariant forms on $V$ and $Z$. Then $V\otimes Z$ is completely reducible if and only if the form is non-degenerate when restricted to the sum of all highest weight submodules in $V\otimes Z$ or equivalently to the span of singular vectors.
Keywords: highest weight modules; contravariant form; tensor product; complete reducibility.
@article{SIGMA_2019_15_a25,
     author = {Andrey I. Mudrov},
     title = {Contravariant {Form} on {Tensor} {Product} of {Highest} {Weight} {Modules}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a25/}
}
TY  - JOUR
AU  - Andrey I. Mudrov
TI  - Contravariant Form on Tensor Product of Highest Weight Modules
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a25/
LA  - en
ID  - SIGMA_2019_15_a25
ER  - 
%0 Journal Article
%A Andrey I. Mudrov
%T Contravariant Form on Tensor Product of Highest Weight Modules
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a25/
%G en
%F SIGMA_2019_15_a25
Andrey I. Mudrov. Contravariant Form on Tensor Product of Highest Weight Modules. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a25/

[1] Asherova R. M., Smirnov Yu. F., Tolstoy V. N., “Projection operators for simple Lie groups”, Teoret. and Math. Phys., 8 (1971), 813–825 | DOI | MR | Zbl

[2] Bernstein J. N., Gelfand S. I., “Tensor products of finite and infinite dimensional representations of semisimple Lie algebras”, Compositio Math., 41 (1980), 245–285 | MR | Zbl

[3] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl

[4] Drinfeld V. G., “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR

[5] Drinfeld V. G., “Quasi-Hopf algebras”, Leningrad Math. J., 1 (1989), 1419–1457 | MR

[6] Erdmann K., Wildon M. J., Introduction to Lie algebras, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2006 | DOI | MR | Zbl

[7] Etingof P., Varchenko A., “Dynamical Weyl groups and applications”, Adv. Math., 167 (2002), 74–127, arXiv: math.QA/0011001 | DOI | MR | Zbl

[8] Jantzen J. C., Lectures on quantum groups, Graduate Studies in Mathematics, 6, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[9] Khoroshkin S. M., Tolstoy V. N., “Extremal projector and universal $R$-matrix for quantized contragredient Lie (super)algebras”, Quantum Groups and Related Topics (Wrocław, 1991), Math. Phys. Stud., 13, Kluwer Acad. Publ., Dordrecht, 1992, 23–32 | DOI | MR | Zbl

[10] Kostant B., “On the tensor product of a finite and an infinite dimensional representation”, J. Funct. Anal., 20 (1975), 257–285 | DOI | MR | Zbl

[11] Kulish P. P., Mudrov A. I., “Dynamical reflection equation”, Quantum Groups, Contemp. Math., 433, Amer. Math. Soc., Providence, RI, 2007, 281–309 | DOI | DOI | MR | Zbl

[12] Mudrov A., Equivariant vector bundles over quantum spheres | DOI

[13] Mudrov A., “Equivariant vector bundles over quantum projective spaces”, Teoret. and Math. Phys., 198 (2019), 284–295, arXiv: 1805.02557 | DOI | MR

[14] Shapovalov N. N., “On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra”, Funct. Anal. Appl., 6 (1972), 307–312 | DOI | MR

[15] Zhelobenko D. P., Representations of reductive Lie algebras, Nauka, M., 1994 | MR