@article{SIGMA_2019_15_a25,
author = {Andrey I. Mudrov},
title = {Contravariant {Form} on {Tensor} {Product} of {Highest} {Weight} {Modules}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a25/}
}
Andrey I. Mudrov. Contravariant Form on Tensor Product of Highest Weight Modules. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a25/
[1] Asherova R. M., Smirnov Yu. F., Tolstoy V. N., “Projection operators for simple Lie groups”, Teoret. and Math. Phys., 8 (1971), 813–825 | DOI | MR | Zbl
[2] Bernstein J. N., Gelfand S. I., “Tensor products of finite and infinite dimensional representations of semisimple Lie algebras”, Compositio Math., 41 (1980), 245–285 | MR | Zbl
[3] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[4] Drinfeld V. G., “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR
[5] Drinfeld V. G., “Quasi-Hopf algebras”, Leningrad Math. J., 1 (1989), 1419–1457 | MR
[6] Erdmann K., Wildon M. J., Introduction to Lie algebras, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2006 | DOI | MR | Zbl
[7] Etingof P., Varchenko A., “Dynamical Weyl groups and applications”, Adv. Math., 167 (2002), 74–127, arXiv: math.QA/0011001 | DOI | MR | Zbl
[8] Jantzen J. C., Lectures on quantum groups, Graduate Studies in Mathematics, 6, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[9] Khoroshkin S. M., Tolstoy V. N., “Extremal projector and universal $R$-matrix for quantized contragredient Lie (super)algebras”, Quantum Groups and Related Topics (Wrocław, 1991), Math. Phys. Stud., 13, Kluwer Acad. Publ., Dordrecht, 1992, 23–32 | DOI | MR | Zbl
[10] Kostant B., “On the tensor product of a finite and an infinite dimensional representation”, J. Funct. Anal., 20 (1975), 257–285 | DOI | MR | Zbl
[11] Kulish P. P., Mudrov A. I., “Dynamical reflection equation”, Quantum Groups, Contemp. Math., 433, Amer. Math. Soc., Providence, RI, 2007, 281–309 | DOI | DOI | MR | Zbl
[12] Mudrov A., Equivariant vector bundles over quantum spheres | DOI
[13] Mudrov A., “Equivariant vector bundles over quantum projective spaces”, Teoret. and Math. Phys., 198 (2019), 284–295, arXiv: 1805.02557 | DOI | MR
[14] Shapovalov N. N., “On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra”, Funct. Anal. Appl., 6 (1972), 307–312 | DOI | MR
[15] Zhelobenko D. P., Representations of reductive Lie algebras, Nauka, M., 1994 | MR