@article{SIGMA_2019_15_a24,
author = {Alba Grassi and Marcos Mari\~no},
title = {A {Solvable} {Deformation} of {Quantum} {Mechanics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a24/}
}
Alba Grassi; Marcos Mariño. A Solvable Deformation of Quantum Mechanics. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a24/
[1] Aganagic M., Cheng M. C. N., Dijkgraaf R., Krefl D., Vafa C., “Quantum geometry of refined topological strings”, J. High Energy Phys., 2012:11 (2012), 019, 53 pp., arXiv: 1105.0630 | DOI | MR
[2] Aganagic M., Klemm A., Mariño M., Vafa C., “The topological vertex”, Comm. Math. Phys., 254 (2005), 425–478, arXiv: hep-th/0305132 | DOI | MR | Zbl
[3] Álvarez G., “Langer–Cherry derivation of the multi-instanton expansion for the symmetric double well”, J. Math. Phys., 45 (2004), 3095–3108 | DOI | MR | Zbl
[4] Álvarez G., Casares C., “Exponentially small corrections in the asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator”, J. Phys. A: Math. Gen., 33 (2000), 5171–5182 | DOI | MR
[5] Aniceto I., Başar G., Schiappa R., A primer on resurgent transseries and their asymptotics, arXiv: 1802.10441
[6] Argyres P. C., Douglas M. R., “New phenomena in ${\rm SU}(3)$ supersymmetric gauge theory”, Nuclear Phys. B, 448 (1995), 93–126, arXiv: hep-th/9505062 | DOI | MR | Zbl
[7] Argyres P. C., Faraggi A. E., “The vacuum structure and spectrum of $N=2$ supersymmetric ${\rm SU}(n)$ gauge theory”, Phys. Rev. Lett., 74 (1995), 3931–3934 | DOI | MR
[8] Avila A., “Convergence of an exact quantization scheme”, Comm. Math. Phys., 249 (2004), 305–318, arXiv: math.DS/0306218 | DOI | MR | Zbl
[9] Babelon O., Bernard D., Talon M., Introduction to classical integrable systems, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl
[10] Balian R., Parisi G., Voros A., “Quartic oscillator”, Feynman Path Integrals bookinfo Proc. Internat. Colloq. (Marseille, 1978), Lecture Notes in Phys., 106, Springer, Berlin–New York, 1979, 337–360 | DOI | MR
[11] Bender C. M., Wu T. T., “Anharmonic oscillator”, Phys. Rev., 184 (1969), 1231–1260 | DOI | MR
[12] Bonelli G., Grassi A., Tanzini A., “Seiberg–Witten theory as a Fermi gas”, Lett. Math. Phys., 107 (2017), 1–30, arXiv: 1603.01174 | DOI | MR | Zbl
[13] Bonelli G., Grassi A., Tanzini A., “New results in ${\mathcal N}=2$ theories from non-perturbative string”, Ann. Henri Poincaré, 19 (2018), 743–774, arXiv: 1704.01517 | DOI | MR | Zbl
[14] Bourgine J.-E., “Confinement and Mayer cluster expansions”, Internat. J. Modern Phys. A, 29 (2014), 1450077, 32 pp., arXiv: 1402.1626 | DOI | MR | Zbl
[15] Brini A., Tanzini A., “Exact results for topological strings on resolved $Y^{p,q}$ singularities”, Comm. Math. Phys., 289 (2009), 205–252, arXiv: 0804.2598 | DOI | MR | Zbl
[16] Bruzzo U., Fucito F., Morales J. F., Tanzini A., “Multiinstanton calculus and equivariant cohomology”, J. High Energy Phys., 2003, no. 5, 054, 24 pp., arXiv: hep-th/0211108 | DOI | MR
[17] Bullimore M., Kim H.-C., “The superconformal index of the $(2,0)$ theory with defects”, J. High Energy Phys., 2015:5 (2015), 048, 42 pp., arXiv: 1412.3872 | DOI | MR
[18] Bullimore M., Kim H.-C., Koroteev P., “Defects and quantum Seiberg–Witten geometry”, J. High Energy Phys., 2015:5 (2015), 095, 78 pp., arXiv: 1412.6081 | DOI | MR
[19] Caliceti E., Graffi S., Maioli M., “Perturbation theory of odd anharmonic oscillators”, Comm. Math. Phys., 75 (1980), 51–66 | DOI | MR | Zbl
[20] Cecotti S., Del Zotto M., “$Y$-systems, $Q$-systems, and 4D ${\mathcal N}=2$ supersymmetric QFT”, J. Phys. A: Math. Theor., 47 (2014), 474001, 40 pp., arXiv: 1403.7613 | DOI | MR | Zbl
[21] Codesido S., Grassi A., Mariño M., “Spectral theory and mirror curves of higher genus”, Ann. Henri Poincaré, 18 (2017), 559–622, arXiv: 1507.02096 | DOI | MR | Zbl
[22] Codesido S., Gu J., Mariño M., “Operators and higher genus mirror curves”, J. High Energy Phys., 2017:2 (2017), 092, 53 pp., arXiv: 1609.00708 | DOI | MR
[23] Codesido S., Mariño M., “Holomorphic anomaly and quantum mechanics”, J. Phys. A: Math. Theor., 51 (2018), 055402, 30 pp., arXiv: 1612.07687 | DOI | MR | Zbl
[24] Codesido S., Mariño M., Schiappa R., “Non-perturbative quantum mechanics from non-perturbative strings”, Ann. Henri Poincaré, 20 (2019), 543–603, arXiv: 1712.02603 | DOI | MR | Zbl
[25] Delabaere E., Dillinger H., Pham F., “Exact semiclassical expansions for one-dimensional quantum oscillators”, J. Math. Phys., 38 (1997), 6126–6184 | DOI | MR | Zbl
[26] Delabaere E., Pham F., “Resurgent methods in semi-classical asymptotics”, Ann. Inst. H. Poincaré Phys. Théor., 71 (1999), 1–94 | MR | Zbl
[27] Deligne P., Etingof P., Freed D. S., Jeffrey L. C., Kazhdan D., Morgan J. W., Morrison D. R., Witten E. (eds.), Quantum fields and strings: a course for mathematicians, v. 2, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[28] Di Francesco P., Mathieu P., Sénéchal D., Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997 | DOI | MR | Zbl
[29] Dillinger H., Delabaere E., Pham F., “Résurgence de Voros et périodes des courbes hyperelliptiques”, Ann. Inst. Fourier (Grenoble), 43 (1993), 163–199 | DOI | MR | Zbl
[30] Dingle R. B., Morgan G. J., “${\rm WKB}$ methods for difference equations. I”, Appl. Sci. Res., 18 (1968), 221–237 | DOI | MR
[31] Dorey P., Dunning C., Tateo R., “The ODE/IM correspondence”, J. Phys. A: Math. Theor., 40 (2007), R205–R283, arXiv: hep-th/0703066 | DOI | MR | Zbl
[32] Dorey P., Tateo R., “Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations”, J. Phys. A: Math. Gen., 32 (1999), L419–L425, arXiv: hep-th/9812211 | DOI | MR | Zbl
[33] Dunham J. L., “The Wentzel–Brillouin–Kramers method of solving the wave equation”, Phys. Rev., 41 (1932), 713–720 | DOI
[34] Eguchi T., Hori K., Ito K., Yang S.-K., “Study of $N=2$ superconformal field theories in $4$ dimensions”, Nuclear Phys. B, 471 (1996), 430–442, arXiv: hep-th/9603002 | DOI | MR | Zbl
[35] Felder G., Müller-Lennert M., “Analyticity of Nekrasov partition functions”, Comm. Math. Phys., 364 (2018), 683–718, arXiv: 1709.05232 | DOI | MR | Zbl
[36] Fischbach F., Klemm A., Nega C., “WKB method and quantum periods beyond genus one”, J. Phys. A: Math. Theor., 52 (2019), 075402, 37 pp., arXiv: 1803.11222 | DOI | MR
[37] Flume R., Fucito F., Morales J. F., Poghossian R., “Matone's relation in the presence of gravitational couplings”, J. High Energy Phys., 2004:4 (2004), 008, 18 pp., arXiv: hep-th/0403057 | DOI | MR
[38] Franco S., Hatsuda Y., Mariño M., “Exact quantization conditions for cluster integrable systems”, J. Stat. Mech. Theory Exp., 2016 (2016), 063107, 30 pp., arXiv: 1512.03061 | DOI | MR
[39] Fucito F., Morales J. F., Poghossian R., “Wilson loops and chiral correlators on squashed spheres”, J. High Energy Phys., 2015:11 (2015), 064, 32 pp., arXiv: 1507.05426 | DOI | MR
[40] Fucito F., Morales J. F., Poghossian R., Ricci Pacifici D., “Gauge theories on $\Omega$-backgrounds from non commutative Seiberg–Witten curves”, J. High Energy Phys., 2011:5 (2011), 098, 27 pp., arXiv: 1103.4495 | DOI | MR | Zbl
[41] Fucito F., Morales J. F., Ricci Pacifici D., “Deformed Seiberg–Witten curves for ADE quivers”, J. High Energy Phys., 2013:1 (2013), 091, 20 pp., arXiv: 1210.3580 | DOI | MR | Zbl
[42] Gaiotto D., Opers and TBA, arXiv: 1403.6137
[43] Gaiotto D., Moore G. W., Neitzke A., “Four-dimensional wall-crossing via three-dimensional field theory”, Comm. Math. Phys., 299 (2010), 163–224, arXiv: 0807.4723 | DOI | MR | Zbl
[44] Goncharov A. B., Kenyon R., “Dimers and cluster integrable systems”, Ann. Sci. Éc. Norm. Supér. (4), 46 (2013), 747–813, arXiv: 1107.5588 | DOI | MR | Zbl
[45] Gopakumar R., Vafa C., M-theory and topological strings. II, arXiv: hep-th/9812127
[46] Gorsky A., Krichever I. M., Marshakov A., Mironov A., Morozov A., “Integrability and Seiberg–Witten exact solution”, Phys. Lett. B, 355 (1995), 466–474, arXiv: hep-th/9505035 | DOI | MR | Zbl
[47] Grassi A., Gu J., BPS relations from spectral problems and blowup equations, arXiv: 1609.05914
[48] Grassi A., Gu J., “Argyres–Douglas theories, Painlevé II and quantum mechanics”, J. High Energy Phys., 2019:2 (2019), 060, 35 pp., arXiv: 1803.02320 | DOI
[49] Grassi A., Hatsuda Y., Mariño M., “Topological strings from quantum mechanics”, Ann. Henri Poincaré, 17 (2016), 3177–3235, arXiv: 1410.3382 | DOI | MR | Zbl
[50] Grassi A., Mariño M., “The complex side of the TS/ST correspondence”, J. Phys. A: Math. Theor., 52 (2019), 055402, 22 pp., arXiv: 1708.08642 | DOI
[51] Gu J., Sulejmanpasic T., “High order perturbation theory for difference equations and {B}orel summability of quantum mirror curves”, J. High Energy Phys., 2017:12 (2017), 014, 36 pp., arXiv: 1709.00854 | DOI | MR
[52] Gutzwiller M. C., “The quantum mechanical Toda lattice”, Ann. Physics, 124 (1980), 347–381 | DOI | MR
[53] Gutzwiller M. C., “The quantum mechanical Toda lattice. II”, Ann. Physics, 133 (1981), 304–331 | DOI | MR
[54] Hatsuda Y., Mariño M., “Exact quantization conditions for the relativistic Toda lattice”, J. High Energy Phys., 2016:5 (2016), 133, 35 pp., arXiv: 1511.02860 | DOI | MR | Zbl
[55] Hatsuda Y., Mariño M., Moriyama S., Okuyama K., “Non-perturbative effects and the refined topological string”, J. High Energy Phys., 2014:9 (2014), 168, 42 pp., arXiv: 1306.1734 | DOI | MR | Zbl
[56] Huang M.-X., Klemm A., Poretschkin M., “Refined stable pair invariants for E-, M- and $[p,q]$-strings”, J. High Energy Phys., 2013:11 (2013), 112, 117 pp., arXiv: 1308.0619 | DOI
[57] Huang M.-X., Sun K., Wang X., “Blowup equations for refined topological strings”, J. High Energy Phys., 2018:10 (2018), 196, 87 pp., arXiv: 1711.09884 | DOI | MR
[58] Humphreys J. E., Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York–Berlin, 1972 | DOI | MR | Zbl
[59] Iqbal A., Kozçaz C., Vafa C., “The refined topological vertex”, J. High Energy Phys., 2009:10 (2009), 069, 58 pp., arXiv: hep-th/0701156 | DOI | MR
[60] Ito K., Shu H., “ODE/IM correspondence and the Argyres–Douglas theory”, J. High Energy Phys., 2017:8 (2017), 071, 22 pp. | DOI | MR
[61] Jentschura U. D., Surzhykov A., Zinn-Justin J., “Multi-instantons and exact results. III Unification of even and odd anharmonic oscillators”, Ann. Physics, 325 (2010), 1135–1172, arXiv: 1001.3910 | DOI | MR | Zbl
[62] Kozlowski K., Teschner J., “TBA for the Toda chain”, New Trends in Quantum Integrable Systems, World Sci. Publ., Hackensack, NJ, 2011, 195–219, arXiv: 1006.2906 | DOI | MR | Zbl
[63] Källén J., Mariño M., “Instanton effects and quantum spectral curves”, Ann. Henri Poincaré, 17 (2016), 1037–1074, arXiv: 1308.6485 | DOI | MR | Zbl
[64] Kashani-Poor A.-K., “Quantization condition from exact WKB for difference equations”, J. High Energy Phys., 2016:6 (2016), 180, 34 pp., arXiv: 1604.01690 | DOI | MR | Zbl
[65] Katz S., Klemm A., Vafa C., “Geometric engineering of quantum field theories”, Nuclear Phys. B, 497 (1997), 173–195, arXiv: hep-th/9609239 | DOI | MR | Zbl
[66] Kharchev S., Lebedev D., “Integral representation for the eigenfunctions of a quantum periodic Toda chain”, Lett. Math. Phys., 50 (1999), 53–77, arXiv: hep-th/9910265 | DOI | MR | Zbl
[67] Klemm A., Lerche W., Mayr P., Vafa C., Warner N., “Self-dual strings and $N=2$ supersymmetric field theory”, Nuclear Phys. B, 477 (1996), 746–764, arXiv: hep-th/9604034 | DOI | MR | Zbl
[68] Klemm A., Lerche W., Theisen S., “Nonperturbative effective actions of $(N=2)$-supersymmetric gauge theories”, Internat. J. Modern Phys. A, 11 (1996), 1929–1973, arXiv: hep-th/9505150 | DOI | MR | Zbl
[69] Klemm A., Lerche W., Yankielowicz S., Theisen S., “Simple singularities and $N=2$ supersymmetric Yang–Mills theory”, Phys. Lett. B, 344 (1995), 169–175, arXiv: hep-th/9411048 | DOI | MR
[70] Konishi K., Paffuti G., Quantum mechanics: a new introduction, Oxford University Press, 2009 | Zbl
[71] Landau L. D., Lifshitz E. M., Quantum mechanics: non-relativistic theory, Elsevier, 2013 | MR
[72] Laptev A., Schimmer L., Takhtajan L. A., “Weyl type asymptotics and bounds for the eigenvalues of functional-difference operators for mirror curves”, Geom. Funct. Anal., 26 (2016), 288–305, arXiv: 1510.00045 | DOI | MR | Zbl
[73] Losev A. S., Marshakov A. V., Nekrasov N. A., “Small instantons, little strings and free fermions”, From Fields to Strings: Circumnavigating Theoretical Physics, v. 1, World Sci. Publ., Singapore, 2005, 581–621, arXiv: hep-th/0302191 | DOI | MR | Zbl
[74] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979 | MR
[75] Mariño M., “Lectures on non-perturbative effects in large $N$ gauge theories, matrix models and strings”, Fortschr. Phys., 62 (2014), 455–540, arXiv: 1206.6272 | DOI | MR | Zbl
[76] Mariño M., Instantons and large $N$. An introduction to non-perturbative methods in quantum field theory, Cambridge University Press, Cambridge, 2015 | DOI | MR | Zbl
[77] Mariño M., “Spectral theory and mirror symmetry”, String-Math 2016, Proc. Sympos. Pure Math., 98, Amer. Math. Soc., Providence, RI, 2018, 259–294, arXiv: 1506.07757 | DOI | MR
[78] Mariño M., Zakany S., “Exact eigenfunctions and the open topological string”, J. Phys. A: Math. Theor., 50 (2017), 325401, 50 pp., arXiv: 1606.05297 | DOI | MR | Zbl
[79] Mariño M., Zakany S., Wavefunctions, integrability, and open strings, arXiv: 1706.07402
[80] Martinec E. J., Warner N. P., “Integrable systems and supersymmetric gauge theory”, Nuclear Phys. B, 459 (1996), 97–112, arXiv: hep-th/9509161 | DOI | MR | Zbl
[81] Matone M., “Instantons and recursion relations in $N=2$ SUSY gauge theory”, Phys. Lett. B, 357 (1995), 342–348, arXiv: hep-th/9506102 | DOI | MR
[82] Matsuyama A., “Periodic Toda lattice in quantum mechanics”, Ann. Physics, 220 (1992), 300–334 | DOI | MR | Zbl
[83] Meneghelli C., Yang G., “Mayer-cluster expansion of instanton partition functions and thermodynamic Bethe ansatz”, J. High Energy Phys., 2014:5 (2014), 112, 42 pp., arXiv: 1312.4537 | DOI | MR
[84] Mironov A., Morosov A., “Nekrasov functions and exact Bohr–Sommerfeld integrals”, J. High Energy Phys., 2010:4 (2010), 040, 15 pp., arXiv: 0910.5670 | DOI | MR | Zbl
[85] Mironov A., Morozov A., “Nekrasov functions from exact Bohr–Sommerfeld periods: the case of ${\rm SU}(N)$”, J. Phys. A: Math. Theor., 43 (2010), 195401, 11 pp., arXiv: 0911.2396 | DOI | MR | Zbl
[86] Nekrasov N., “Five-dimensional gauge theories and relativistic integrable systems”, Nuclear Phys. B, 531 (1998), 323–344, arXiv: hep-th/9609219 | DOI | MR | Zbl
[87] Nekrasov N. A., “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7 (2003), 831–864, arXiv: hep-th/0206161 | DOI | MR | Zbl
[88] Nekrasov N. A., Okounkov A., “Seiberg–Witten theory and random partitions”, The Unity of Mathematics, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006, 525–596, arXiv: hep-th/0306238 | DOI | MR | Zbl
[89] Nekrasov N. A., Shatashvili S. L., “Quantization of integrable systems and four dimensional gauge theories”, XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, 265–289, arXiv: 0908.4052 | DOI | MR | Zbl
[90] Pasquier V., Gaudin M., “The periodic Toda chain and a matrix generalization of the Bessel function recursion relations”, J. Phys. A: Math. Gen., 25 (1992), 5243–5252 | DOI | MR | Zbl
[91] Poghossian R., “Deforming SW curve”, J. High Energy Phys., 2011:4 (2011), 033, 12 pp., arXiv: 1006.4822 | DOI | MR | Zbl
[92] Sciarappa A., “Bethe/gauge correspondence in odd dimension: modular double, non-perturbative corrections and open topological strings”, J. High Energy Phys., 2016:10 (2016), 014, 57 pp., arXiv: 1606.01000 | DOI | MR
[93] Sciarappa A., “Exact relativistic Toda chain eigenfunctions from separation of variables and gauge theory”, J. High Energy Phys., 2017:10 (2017), 116, 87 pp., arXiv: 1706.05142 | DOI | MR | Zbl
[94] Seara T. M., Sauzin D., “Borel summation and the theory of resurgence”, Butl. Soc. Catalana Mat., 18 (2003), 131–153 | MR
[95] Seiberg N., Witten E., “Electric-magnetic duality, monopole condensation, and confinement in ${\mathcal N}=2$ supersymmetric Yang–Mills theory”, Nuclear Phys. B, 426 (1994), 19–52 | DOI | MR | Zbl
[96] Silverstone H. J., “JWKB connection-formula problem revisited via Borel summation”, Phys. Rev. Lett., 55 (1985), 2523–2526 | DOI | MR
[97] Sklyanin E. K., “The quantum Toda chain”, Nonlinear Equations in Classical and Quantum Field Theory, Meudon/Paris, 1983/1984, Lecture Notes in Phys., 226, Springer, Berlin, 1985, 196–233 | DOI | MR
[98] Sulejmanpasic T., Ünsal M., “Aspects of perturbation theory in quantum mechanics: the {\tt BenderWu} Mathematica$^\circledR$ package”, Comput. Phys. Commun., 228 (2018), 273–289, arXiv: 1608.08256 | DOI | MR
[99] Sun K., Wang X., Huang M.-X., “Exact quantization conditions, toric Calabi–Yau and non-perturbative topological string”, J. High Energy Phys., 2017:1 (2017), 061, 102 pp., arXiv: 1606.07330 | DOI | MR
[100] Tachikawa Y., “A review on instanton counting and W-algebras”, New Dualities of Supersymmetric Gauge Theories, Springer, Cham, 2016, 79–120, arXiv: 1412.7121 | DOI | MR | Zbl
[101] Taki M., “Refined topological vertex and instanton counting”, J. High Energy Phys., 2008:3 (2008), 048, 22 pp., arXiv: 0710.1776 | DOI | MR
[102] Voros A., Spectre de l'équation de Schrödinger et méthode BKW, Publications Mathématiques d'Orsay 81, 9, Université de Paris-Sud, Orsay, 1982 | MR
[103] Voros A., “The return of the quartic oscillator: the complex WKB method”, Ann. Inst. H. Poincaré Sect. A, 39 (1983), 211–338 | MR | Zbl
[104] Voros A., “Exact anharmonic quantization condition (in one dimension)”, Quasiclassical Methods (Minneapolis, MN, 1995), IMA Vol. Math. Appl., 95, Springer, New York, 1997, 189–224 | DOI | MR | Zbl
[105] Voros A., “Exact resolution method for general $1$D polynomial Schrödinger equation”, J. Phys. A: Math. Gen., 32 (1999), 5993–6007, arXiv: math-ph/9903045 | DOI | MR | Zbl
[106] Wang X., Zhang G., Huang M.-X., “New exact quantization condition for toric Calabi–Yau geometries”, Phys. Rev. Lett., 115 (2015), 121601, 5 pp., arXiv: 1505.05360 | DOI
[107] Wilczek F., “Quantum time crystals”, Phys. Rev. Lett., 109 (2012), 160401, 5 pp., arXiv: 1202.2539 | DOI
[108] Yaris R., Bendler J., Lovett R. A., Bender C. M., Fedders P. A., “Resonance calculations for arbitrary potentials”, Phys. Rev. A, 18 (1978), 1816–1825 | DOI
[109] Zinn-Justin J., “Multi-instanton contributions in quantum mechanics. II”, Nuclear Phys. B, 218 (1983), 333–348 | DOI | MR
[110] Zinn-Justin J., Jentschura U. D., “Multi-instantons and exact results. I Conjectures, WKB expansions, and instanton interactions”, Ann. Physics, 313 (2004), 197–267, arXiv: quant-ph/0501136 | DOI | MR | Zbl
[111] Zinn-Justin J., Jentschura U. D., “Multi-instantons and exact results. II Specific cases, higher-order effects, and numerical calculations”, Ann. Physics, 313 (2004), 269–325, arXiv: quant-ph/0501137 | DOI | MR | Zbl