On a Yang–Mills Type Functional
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a functional that derives from the classical Yang–Mills functional and Born–Infeld theory. We establish its first variation formula and prove the existence of critical points. We also obtain the second variation formula.
Keywords: curvature; vector bundle; Yang–Mills connections; variations.
@article{SIGMA_2019_15_a21,
     author = {C\u{a}t\u{a}lin Gherghe},
     title = {On a {Yang{\textendash}Mills} {Type} {Functional}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a21/}
}
TY  - JOUR
AU  - Cătălin Gherghe
TI  - On a Yang–Mills Type Functional
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a21/
LA  - en
ID  - SIGMA_2019_15_a21
ER  - 
%0 Journal Article
%A Cătălin Gherghe
%T On a Yang–Mills Type Functional
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a21/
%G en
%F SIGMA_2019_15_a21
Cătălin Gherghe. On a Yang–Mills Type Functional. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a21/

[1] Baird P., “Stress-energy tensors and the Lichnerowicz Laplacian”, J. Geom. Phys., 58 (2008), 1329–1342 | DOI | MR | Zbl

[2] Bourguignon J. P., Lawson Jr. H.B., “Stability and isolation phenomena for Yang–Mills fields”, Comm. Math. Phys., 79 (1981), 189–230 | DOI | MR | Zbl

[3] Dong Y., Wei S. W., “On vanishing theorems for vector bundle valued $p$-forms and their applications”, Comm. Math. Phys., 304 (2011), 329–368, arXiv: 1003.3777 | DOI | MR | Zbl

[4] Uhlenbeck K. K., “Connections with $L^{p}$ bounds on curvature”, Comm. Math. Phys., 83 (1982), 31–42 | DOI | MR | Zbl