@article{SIGMA_2019_15_a20,
author = {Marcela Popescu and Paul Popescu},
title = {Almost {Lie} {Algebroids} and {Characteristic} {Classes}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a20/}
}
Marcela Popescu; Paul Popescu. Almost Lie Algebroids and Characteristic Classes. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a20/
[1] Bruce A. J., Grabowski J., Pre-Courant algebroids, arXiv: 1608.01585
[2] Cannas da Silva A., Weinstein A., Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[3] de León M., Marrero J. C., Martín de Diego D., “Linear almost Poisson structures and Hamilton–Jacobi equation. Applications to nonholonomic mechanics”, J. Geom. Mech., 2 (2010), 159–198, arXiv: 0801.4358 | DOI | MR | Zbl
[4] Fernandes R. L., “Lie algebroids, holonomy and characteristic classes”, Adv. Math., 170 (2002), 119–179, arXiv: math.DG/0007132 | DOI | MR | Zbl
[5] Grabowska K., Grabowski J., “Variational calculus with constraints on general algebroids”, J. Phys. A: Math. Theor., 41 (2008), 175204, 25 pp., arXiv: 0712.2766 | DOI | MR | Zbl
[6] Grabowski J., “Brackets”, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1360001, 45 pp., arXiv: 1301.0227 | DOI | MR
[7] Grabowski J., de León M., Marrero J. C., Martín de Diego D., “Nonholonomic constraints: a new viewpoint”, J. Math. Phys., 50 (2009), 013520, 17 pp., arXiv: 0806.1117 | DOI | MR | Zbl
[8] Grabowski J., Jóźwikowski M., “Pontryagin maximum principle on almost Lie algebroids”, SIAM J. Control Optim., 49 (2011), 1306–1357, arXiv: 0905.2767 | DOI | MR | Zbl
[9] Grützmann M., Xu X., Cohomology for almost Lie algebroids, arXiv: 1206.5466
[10] Husemoller D., Fibre bundles, McGraw-Hill Book Co., New York–London–Sydney, 1966 | MR | Zbl
[11] Ida C., Popescu P., “On almost complex Lie algebroids”, Mediterr. J. Math., 13 (2016), 803–824, arXiv: 1311.2475 | DOI | MR | Zbl
[12] Kubarski J., “Characteristic classes of regular Lie algebroids – a sketch”, Rend. Circ. Mat. Palermo (2) Suppl., 1993, 71–94 | MR | Zbl
[13] Liu Z., Sheng Y., Xu X., “The Pontryagin class for pre-Courant algebroids”, J. Geom. Phys., 104 (2016), 148–162, arXiv: 1205.5898 | DOI | MR | Zbl
[14] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[15] Maxim-Răileanu L., “Cohomology of Lie algebroids”, An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ IaM at. (N.S.), 22 (1976), 197–199 | MR | Zbl
[16] Mishchenko A. S., Nguyen L., Some results on the Mackenzie obstruction for transitive Lie algebroids, arXiv: 1708.02784
[17] Popescu M., Popescu P., “Geometric objects defined by almost Lie structures”, Lie Algebroids and Related Topics in Differential Geometry (Warsaw, 2000), Banach Center Publ., 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001, 217–233 | DOI | MR | Zbl
[18] Popescu P., “Categories of modules with differentials”, J. Algebra, 185 (1996), 50–73 | DOI | MR | Zbl
[19] Popescu P., “Poisson structures on almost complex Lie algebroids”, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1450069, 22 pp., arXiv: 1409.4241 | DOI | MR | Zbl
[20] Popescu P., Popescu M., “Anchored vector bundles and Lie algebroids”, Lie Algebroids and Related Topics in Differential Geometry (Warsaw, 2000), Banach Center Publ., 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001, 51–69 | DOI | MR | Zbl
[21] Vaisman I., “Transitive Courant algebroids”, Int. J. Math. Math. Sci., 2005, 1737–1758, arXiv: math.DG/0407399 | DOI | MR | Zbl