Almost Lie Algebroids and Characteristic Classes
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Almost Lie algebroids are generalizations of Lie algebroids, when the Jacobiator is not necessary null. A simple example is given, for which a Lie algebroid bracket or a Courant bundle is not possible for the given anchor, but a natural extension of the bundle and the new anchor allows a Lie algebroid bracket. A cohomology and related characteristic classes of an almost Lie algebroid are also constructed. We prove that these characteristic classes are all pull-backs of the characteristic classes of the base space, as in the case of a Lie algebroid.
Keywords: almost Lie algebroid; Jacobiator; characteristic classes.
@article{SIGMA_2019_15_a20,
     author = {Marcela Popescu and Paul Popescu},
     title = {Almost {Lie} {Algebroids} and {Characteristic} {Classes}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a20/}
}
TY  - JOUR
AU  - Marcela Popescu
AU  - Paul Popescu
TI  - Almost Lie Algebroids and Characteristic Classes
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a20/
LA  - en
ID  - SIGMA_2019_15_a20
ER  - 
%0 Journal Article
%A Marcela Popescu
%A Paul Popescu
%T Almost Lie Algebroids and Characteristic Classes
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a20/
%G en
%F SIGMA_2019_15_a20
Marcela Popescu; Paul Popescu. Almost Lie Algebroids and Characteristic Classes. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a20/

[1] Bruce A. J., Grabowski J., Pre-Courant algebroids, arXiv: 1608.01585

[2] Cannas da Silva A., Weinstein A., Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[3] de León M., Marrero J. C., Martín de Diego D., “Linear almost Poisson structures and Hamilton–Jacobi equation. Applications to nonholonomic mechanics”, J. Geom. Mech., 2 (2010), 159–198, arXiv: 0801.4358 | DOI | MR | Zbl

[4] Fernandes R. L., “Lie algebroids, holonomy and characteristic classes”, Adv. Math., 170 (2002), 119–179, arXiv: math.DG/0007132 | DOI | MR | Zbl

[5] Grabowska K., Grabowski J., “Variational calculus with constraints on general algebroids”, J. Phys. A: Math. Theor., 41 (2008), 175204, 25 pp., arXiv: 0712.2766 | DOI | MR | Zbl

[6] Grabowski J., “Brackets”, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1360001, 45 pp., arXiv: 1301.0227 | DOI | MR

[7] Grabowski J., de León M., Marrero J. C., Martín de Diego D., “Nonholonomic constraints: a new viewpoint”, J. Math. Phys., 50 (2009), 013520, 17 pp., arXiv: 0806.1117 | DOI | MR | Zbl

[8] Grabowski J., Jóźwikowski M., “Pontryagin maximum principle on almost Lie algebroids”, SIAM J. Control Optim., 49 (2011), 1306–1357, arXiv: 0905.2767 | DOI | MR | Zbl

[9] Grützmann M., Xu X., Cohomology for almost Lie algebroids, arXiv: 1206.5466

[10] Husemoller D., Fibre bundles, McGraw-Hill Book Co., New York–London–Sydney, 1966 | MR | Zbl

[11] Ida C., Popescu P., “On almost complex Lie algebroids”, Mediterr. J. Math., 13 (2016), 803–824, arXiv: 1311.2475 | DOI | MR | Zbl

[12] Kubarski J., “Characteristic classes of regular Lie algebroids – a sketch”, Rend. Circ. Mat. Palermo (2) Suppl., 1993, 71–94 | MR | Zbl

[13] Liu Z., Sheng Y., Xu X., “The Pontryagin class for pre-Courant algebroids”, J. Geom. Phys., 104 (2016), 148–162, arXiv: 1205.5898 | DOI | MR | Zbl

[14] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[15] Maxim-Răileanu L., “Cohomology of Lie algebroids”, An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ IaM at. (N.S.), 22 (1976), 197–199 | MR | Zbl

[16] Mishchenko A. S., Nguyen L., Some results on the Mackenzie obstruction for transitive Lie algebroids, arXiv: 1708.02784

[17] Popescu M., Popescu P., “Geometric objects defined by almost Lie structures”, Lie Algebroids and Related Topics in Differential Geometry (Warsaw, 2000), Banach Center Publ., 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001, 217–233 | DOI | MR | Zbl

[18] Popescu P., “Categories of modules with differentials”, J. Algebra, 185 (1996), 50–73 | DOI | MR | Zbl

[19] Popescu P., “Poisson structures on almost complex Lie algebroids”, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1450069, 22 pp., arXiv: 1409.4241 | DOI | MR | Zbl

[20] Popescu P., Popescu M., “Anchored vector bundles and Lie algebroids”, Lie Algebroids and Related Topics in Differential Geometry (Warsaw, 2000), Banach Center Publ., 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001, 51–69 | DOI | MR | Zbl

[21] Vaisman I., “Transitive Courant algebroids”, Int. J. Math. Math. Sci., 2005, 1737–1758, arXiv: math.DG/0407399 | DOI | MR | Zbl