@article{SIGMA_2019_15_a2,
author = {Kazuhiro Hikami},
title = {Note on {Character} {Varieties} and {Cluster} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a2/}
}
Kazuhiro Hikami. Note on Character Varieties and Cluster Algebras. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a2/
[1] Aigner M., Markov's theorem and 100 years of the uniqueness conjecture, Springer, Cham, 2013 | DOI | MR | Zbl
[2] Allegretti D. G. L., Kim H. K., “A duality map for quantum cluster varieties from surfaces”, Adv. Math., 306 (2017), 1164–1208, arXiv: 1509.01567 | DOI | MR | Zbl
[3] Berenstein A., Zelevinsky A., “Quantum cluster algebras”, Adv. Math., 195 (2005), 405–455, arXiv: math.QA/0404446 | DOI | MR | Zbl
[4] Berest Yu., Samuelson P., “Affine cubic surfaces and character varieties of knots”, J. Algebra, 500 (2018), 644–690, arXiv: 1610.08947 | DOI | MR | Zbl
[5] Bershtein M., Gavrylenko P., Marshakov A., “Cluster integrable systems, $q$-Painlevé equations and their quantization”, J. High Energy Phys., 2018:2 (2018), 077, 34 pp., arXiv: 1711.02063 | DOI | MR
[6] Bonahon F., Wong H., “Quantum traces for representations of surface groups in ${\rm SL}_2(\mathbb C)$”, Geom. Topol., 15 (2011), 1569–1615, arXiv: 1003.5250 | DOI | MR | Zbl
[7] Bonahon F., Wong H., “Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations”, Invent. Math., 204 (2016), 195–243, arXiv: 1206.1638 | DOI | MR | Zbl
[8] Bullock D., Przytycki J. H., “Multiplicative structure of Kauffman bracket skein module quantizations”, Proc. Amer. Math. Soc., 128 (2000), 923–931, arXiv: math.QA/9902117 | DOI | MR | Zbl
[9] Chekhov L., Mazzocco M., “Shear coordinate description of the quantized versal unfolding of a $D_4$ singularity”, J. Phys. A: Math. Theor., 43 (2010), 442002, 13 pp., arXiv: 1007.3854 | DOI | MR | Zbl
[10] Chekhov L., Mazzocco M., Rubtsov V., “Painlevé monodromy manifolds, decorated character varieties, and cluster algebras”, Int. Math. Res. Not., 2017 (2017), 7639–7691, arXiv: 1511.03851 | DOI | MR | Zbl
[11] Chekhov L., Mazzocco M., Rubtsov V., Algebras of quantum monodromy data and decorated character varieties, arXiv: 1705.01447 | MR
[12] Chekhov L., Shapiro M., “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables”, Int. Math. Res. Not., 2014 (2014), 2746–2772, arXiv: 1111.3963 | DOI | MR | Zbl
[13] Cherednik I., Double affine Hecke algebras, London Mathematical Society Lecture Note Series, 319, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[14] Cherednik I., “DAHA-Jones polynomials of torus knots”, Selecta Math. (N.S.), 22 (2016), 1013–1053, arXiv: 1406.3959 | DOI | MR | Zbl
[15] Coman I., Gabella M., Teschner J., “Line operators in theories of class $\mathcal S$, quantized moduli space of flat connections, and Toda field theory”, J. High Energy Phys., 2015:10 (2015), 143, 89 pp., arXiv: 1505.05898 | DOI | MR | Zbl
[16] Felikson A., Shapiro M., Tumarkin P., “Cluster algebras and triangulated orbifolds”, Adv. Math., 231 (2012), 2953–3002, arXiv: 1111.3449 | DOI | MR | Zbl
[17] Felikson A., Shapiro M., Tumarkin P., “Skew-symmetric cluster algebras of finite mutation type”, J. Eur. Math. Soc. (JEMS), 14 (2012), 1135–1180, arXiv: 0811.1703 | DOI | MR | Zbl
[18] Fock V. V., Chekhov L. O., “A quantum Teichmüller spaces”, Theoret. and Math. Phys., 120 (1999), 1245–1259, arXiv: math.QA/9908165 | DOI | MR | Zbl
[19] Fock V. V., Goncharov A. B., “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci., 2006, 1–211, arXiv: math.AG/0311149 | DOI | MR | Zbl
[20] Fock V. V., Goncharov A. B., “Dual Teichmüller and lamination spaces”, Handbook of Teichmüller Theory, v. I, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007, 647–684, arXiv: math.DG/0510312 | DOI | MR | Zbl
[21] Fock V. V., Goncharov A. B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI | Zbl
[22] Fock V. V., Goncharov A. B., “The quantum dilogarithm and representations of quantum cluster varieties”, Invent. Math., 175 (2009), 223–286, arXiv: math.QA/0702397 | DOI | MR | Zbl
[23] Fomin S., Shapiro M., Thurston D., “Cluster algebras and triangulated surfaces. I Cluster complexes”, Acta Math., 201 (2008), 83–146, arXiv: math.RA/0608367 | DOI | MR | Zbl
[24] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl
[25] Fomin S., Zelevinsky A., “Cluster algebras. II Finite type classification”, Invent. Math., 154 (2003), 63–121, arXiv: math.RA/0208229 | DOI | MR | Zbl
[26] Gabella M., “Quantum holonomies from spectral networks and framed BPS states”, Comm. Math. Phys., 351 (2017), 563–598, arXiv: 1603.05258 | DOI | MR | Zbl
[27] Gaiotto D., Moore G. W., Neitzke A., “Framed BPS states”, Adv. Theor. Math. Phys., 17 (2013), 241–397, arXiv: 1006.0146 | DOI | MR | Zbl
[28] Gekhtman M., Shapiro M., Vainshtein A., “Cluster algebras and Weil–Petersson forms”, Duke Math. J., 127 (2005), 291–311, arXiv: math.QA/0309138 | DOI | MR | Zbl
[29] Gekhtman M., Shapiro M., Vainshtein A., “Cluster algebras and Poisson geometry”, Mathematical Surveys and Monographs, 167, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl
[30] Goldman W. M., “Ergodic theory on moduli spaces”, Ann. of Math., 146 (1997), 475–507 | DOI | MR | Zbl
[31] Goldman W. M., “The modular group action on real ${\rm SL}(2)$-characters of a one-holed torus”, Geom. Topol., 7 (2003), 443–486, arXiv: math.DG/0305096 | DOI | MR | Zbl
[32] Goldman W. M., Neumann W. D., “Homological action of the modular group on some cubic moduli spaces”, Math. Res. Lett., 12 (2005), 575–591, arXiv: math.GT/0402039 | DOI | MR | Zbl
[33] Hikami K., DAHA and skein algebra on surface: double-torus knots, arXiv: 1901.02743
[34] Hikami K., Inoue R., “Cluster algebra and complex volume of once-punctured torus bundles and 2-bridge links”, J. Knot Theory Ramifications, 23 (2014), 1450006, 33 pp., arXiv: 1212.6042 | DOI | MR | Zbl
[35] Horowitz R. D., “Induced automorphisms on Fricke characters of free groups”, Trans. Amer. Math. Soc., 208 (1975), 41–50 | DOI | MR | Zbl
[36] Iwasaki K., “A modular group action on cubic surfaces and the monodromy of the Painlevé VI equation”, Proc. Japan Acad. Ser. A Math. Sci., 78 (2002), 131–135 | DOI | MR | Zbl
[37] Iwasaki K., “An area-preserving action of the modular group on cubic surfaces and the Painlevé VI equation”, Comm. Math. Phys., 242 (2003), 185–219 | DOI | MR | Zbl
[38] Jimbo M., “Monodromy problem and the boundary condition for some Painlevé equations”, Publ. Res. Inst. Math. Sci., 18 (1982), 1137–1161 | DOI | MR | Zbl
[39] Kashaev R. M., “Quantization of Teichmüller spaces and the quantum dilogarithm”, Lett. Math. Phys., 43 (1998), 105–115, arXiv: q-alg/9705021 | DOI | MR | Zbl
[40] Koornwinder T. H., “Zhedanov's algebra $\rm AW(3)$ and the double affine Hecke algebra in the rank one case. II The spherical subalgebra”, SIGMA, 4 (2008), 052, 17 pp., arXiv: 0711.2320 | DOI | MR | Zbl
[41] Lê T. T. Q., “Triangular decomposition of skein algebras”, Quantum Topol., 9 (2018), 591–632, arXiv: 1609.04987 | DOI | MR | Zbl
[42] Nagao K., Terashima Y., Yamazaki M., “Hyperbolic 3-manifolds and cluster algebras”, Nagoya Math. J. (to appear) , arXiv: 1112.3106 | DOI | MR
[43] Nekrasov N., Rosly A., Shatashvili S., “Darboux coordinates, Yang–Yang functional, and gauge theory”, Nuclear Phys. B Proc. Suppl., 216 (2011), 69–93, arXiv: 1103.3919 | DOI | MR
[44] Oblomkov A., “Double affine Hecke algebras of rank 1 and affine cubic surfaces”, Int. Math. Res. Not., 2004 (2004), 877–912, arXiv: math.RT/0306393 | DOI | MR | Zbl
[45] Ohyama Y., Okumura S., “A coalescent diagram of the Painlevé equations from the viewpoint of isomonodromic deformations”, J. Phys. A: Math. Gen., 39 (2006), 12129–12151, arXiv: math.CA/0601614 | DOI | MR | Zbl
[46] Penner R. C., Decorated Teichmüller theory, QGM Master Class Series, European Mathematical Society (EMS), Zürich, 2012 | DOI | MR | Zbl
[47] Przytycki J. H., Sikora A. S., “On skein algebras and ${\rm Sl}_2(C)$-character varieties”, Topology, 39 (2000), 115–148, arXiv: q-alg/9705011 | DOI | MR | Zbl
[48] Terwilliger P., “The universal Askey-Wilson algebra and DAHA of type $(C^\vee_1,C_1)$”, SIGMA, 9 (2013), 047, 40 pp., arXiv: 1202.4673 | DOI | MR | Zbl
[49] Turaev V. G., “Skein quantization of Poisson algebras of loops on surfaces”, Ann. Sci. École Norm. Sup. (4), 24 (1991), 635–704 | DOI | MR | Zbl
[50] van der Put M., Saito M. H., “Moduli spaces for linear differential equations and the Painlevé equations”, Ann. Inst. Fourier (Grenoble), 59 (2009), 2611–2667, arXiv: 0902.1702 | DOI | MR | Zbl