@article{SIGMA_2019_15_a19,
author = {Ryosuke Kodera},
title = {Braid {Group} {Action} on {Affine} {Yangian}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a19/}
}
Ryosuke Kodera. Braid Group Action on Affine Yangian. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a19/
[1] Beck J., “Braid group action and quantum affine algebras”, Comm. Math. Phys., 165 (1994), 555–568 | DOI | MR | Zbl
[2] Bershtein M., Tsymbaliuk A., “Homomorphisms between different quantum toroidal and affine Yangian algebras”, J. Pure Appl. Algebra, 223 (2019), 867–899 | DOI | MR | Zbl
[3] Ding J., Khoroshkin S., “Weyl group extension of quantized current algebras”, Transform. Groups, 5 (2000), 35–59 | DOI | MR
[4] Guay N., “Cherednik algebras and Yangians”, Int. Math. Res. Not., 2005 (2005), 3551–3593 | DOI | MR | Zbl
[5] Guay N., “Affine Yangians and deformed double current algebras in type A”, Adv. Math., 211 (2007), 436–484 | DOI | MR | Zbl
[6] Guay N., Nakajima H., Wendlandt C., “Coproduct for Yangians of affine Kac–Moody algebras”, Adv. Math., 338 (2018), 865–911 | DOI | MR | Zbl
[7] Guay N., Regelskis V., Wendlandt C., Vertex representations for Yangians of Kac–Moody algebras, arXiv: 1804.04081
[8] Kirillov A. N., Reshetikhin N., “$q$-Weyl group and a multiplicative formula for universal $R$-matrices”, Comm. Math. Phys., 134 (1990), 421–431 | DOI | MR | Zbl
[9] Kodera R., “Affine Yangian action on the Fock space”, Publ. Res. Inst. Math. Sci., 55 (2019), 189–234, arXiv: 1506.01246 | DOI | MR | Zbl
[10] Kodera R., On Guay's evaluation map for affine Yangians, arXiv: 1806.09884
[11] Levendorskii S. Z., Soibelman Y. S., “Some applications of the quantum Weyl groups”, J. Geom. Phys., 7 (1990), 241–254 | DOI | MR
[12] Lusztig G., “Canonical bases arising from quantized enveloping algebras”, J. Amer. Math. Soc., 3 (1990), 447–498 | DOI | MR | Zbl
[13] Lusztig G., “Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra”, J. Amer. Math. Soc., 3 (1990), 257–296 | DOI | MR | Zbl
[14] Lusztig G., “Quantum groups at roots of $1$”, Geom. Dedicata, 35 (1990), 89–113 | DOI | MR
[15] Lusztig G., Introduction to quantum groups, Progress in Mathematics, 110, Birkhäuser Boston, Inc., Boston, MA, 1993 | DOI | MR | Zbl
[16] Saito Y., “PBW basis of quantized universal enveloping algebras”, Publ. Res. Inst. Math. Sci., 30 (1994), 209–232 | DOI | MR | Zbl
[17] Uglov D., “Symmetric functions and the Yangian decomposition of the Fock and basic modules of the affine Lie algebra $\widehat{\mathfrak{sl}}_N$”, Quantum Many-Body Problems and Representation Theory, MSJ Mem., 1, Math. Soc. Japan, Tokyo, 1998, 183–241, arXiv: q-alg/9705010 | MR | Zbl
[18] Varagnolo M., “Quiver varieties and Yangians”, Lett. Math. Phys., 53 (2000), 273–283, arXiv: math.QA/0005277 | DOI | MR | Zbl