@article{SIGMA_2019_15_a18,
author = {Juan Jes\'us Barbar\'an S\'anchez and Laiachi El Kaoutit},
title = {Linear {Representations} and {Frobenius} {Morphisms} of {Groupoids}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a18/}
}
TY - JOUR AU - Juan Jesús Barbarán Sánchez AU - Laiachi El Kaoutit TI - Linear Representations and Frobenius Morphisms of Groupoids JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a18/ LA - en ID - SIGMA_2019_15_a18 ER -
Juan Jesús Barbarán Sánchez; Laiachi El Kaoutit. Linear Representations and Frobenius Morphisms of Groupoids. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a18/
[1] Abrams G. D., “Morita equivalence for rings with local units”, Comm. Algebra, 11 (1983), 801–837 | DOI | MR | Zbl
[2] Ánh P. N., Márki L., “Rees matrix rings”, J. Algebra, 81 (1983), 340–369 | DOI | MR
[3] Ánh P. N., Márki L., “Morita equivalence for rings without identity”, Tsukuba J. Math., 11 (1987), 1–16 | DOI | MR
[4] Bouc S., Biset functors for finite groups, Lecture Notes in Math., 1990, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[5] Brown R., “From groups to groupoids: a brief survey”, Bull. London Math. Soc., 19 (1987), 113–134 | DOI | MR | Zbl
[6] Demazure M., Gabriel P., Groupes algébriques, v. I, {G}éométrie algébrique, généralités, groupes commutatifs, Masson Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970 | MR
[7] El Kaoutit L., “Corings over rings with local units”, Math. Nachr., 282 (2009), 726–747, arXiv: math.RA/0512655 | DOI | MR | Zbl
[8] El Kaoutit L., “On geometrically transitive Hopf algebroids”, J. Pure Appl. Algebra, 222 (2018), 3483–3520, arXiv: 1508.05761 | DOI | MR | Zbl
[9] El Kaoutit L., Kowalzig N., “Morita theory for Hopf algebroids, principal bibundles, and weak equivalences”, Doc. Math., 22 (2017), 551–609, arXiv: 1407.7461 | DOI | MR | Zbl
[10] El Kaoutit L., Spinosa L., “Mackey formula for bisets over groupoids”, J. Algebra Appl. (to appear) , arXiv: 1711.07203 | DOI
[11] Fuller K. R., “On rings whose left modules are direct sums of finitely generated modules”, Proc. Amer. Math. Soc., 54 (1976), 39–44 | DOI | MR | Zbl
[12] Gabriel P., “Des catégories abéliennes”, Bull. Soc. Math. France, 90 (1962), 323–448 | DOI | MR | Zbl
[13] Guay A., Hepburn B., “Symmetry and its formalisms: mathematical aspects”, Philos. Sci., 76 (2009), 160–178 | DOI | MR
[14] Higgins P. J., Notes on categories and groupoids, Van Nostrand Rienhold Mathematical Studies, 32, Van Nostrand Reinhold Co., London–New York–Melbourne, 1971 | MR | Zbl
[15] Howe R., “On Frobenius reciprocity for unipotent algebraic groups over $Q$”, Amer. J. Math., 93 (1971), 163–172 | DOI | MR | Zbl
[16] Jelenc B., “Serre fibrations in the Morita category of topological groupoids”, Topology Appl., 160 (2013), 9–23, arXiv: 1108.5284 | DOI | MR | Zbl
[17] Kadison L., New examples of Frobenius extensions, University Lecture Series, 14, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl
[18] Karoubi M., $K$-theory. An introduction, Classics in Mathematics, Springer-Verlag, Berlin–Heidelberg, 2008 | DOI | MR | Zbl
[19] Kock J., Frobenius algebras and 2D topological quantum field theories, London Mathematical Society Student Texts, 59, Cambridge University Press, Cambridge, 2003 | DOI | MR
[20] Kowalski E., An introduction to the representation theory of groups, Graduate Studies in Mathematics, 155, Amer. Math. Soc., Providence, RI, 2014 | DOI | MR | Zbl
[21] Landsman N. P., “Lie groupoids and Lie algebroids in physics and noncommutative geometry”, J. Geom. Phys., 56 (2006), 24–54, arXiv: math-ph/0506024 | DOI | MR | Zbl
[22] Mac Lane S., Categories for the working mathematician, Graduate Texts in Mathematics, 5, 2nd ed., Springer-Verlag, New York, 1998 | DOI | MR | Zbl
[23] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[24] Mackey G. W., “Induced representations of locally compact groups. II The Frobenius reciprocity theorem”, Ann. of Math., 58 (1953), 193–221 | DOI | MR | Zbl
[25] Mitchell B., Theory of categories, Pure and Applied Mathematics, 17, Academic Press, New York–London, 1965 | MR
[26] Moerdijk I., Mrčun J., “Lie groupoids, sheaves and cohomology”, Poisson Geometry, Deformation Quantisation and Group Representations, London Math. Soc. Lecture Note Ser., 323, Cambridge University Press, Cambridge, 2005, 145–272 | DOI | MR | Zbl
[27] Moore C. C., “On the Frobenius reciprocity theorem for locally compact groups”, Pacific J. Math., 12 (1962), 359–365 | DOI | MR | Zbl
[28] Pysiak L., “Imprimitivity theorem for groupoid representations”, Demonstratio Math., 44 (2011), 29–48, arXiv: 1008.2084 | DOI | MR | Zbl
[29] Renault J., A groupoid approach to $C^{\ast} $-algebras, Lecture Notes in Math., 793, Springer, Berlin, 1980 | DOI | MR | Zbl
[30] Sternberg S., Group theory and physics, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[31] Weinstein A., “Groupoids: unifying internal and external symmetry. A tour through some examples”, Notices Amer. Math. Soc., 43 (1996), 744–752, arXiv: math.RT/9602220 | MR | Zbl