Linear Representations and Frobenius Morphisms of Groupoids
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a morphism of (small) groupoids with injective object map, we provide sufficient and necessary conditions under which the induction and co-induction functors between the categories of linear representations are naturally isomorphic. A morphism with this property is termed a Frobenius morphism of groupoids. As a consequence, an extension by a subgroupoid is Frobenius if and only if each fibre of the (left or right) pull-back biset has finitely many orbits. Our results extend and clarify the classical Frobenius reciprocity formulae in the theory of finite groups, and characterize Frobenius extension of algebras with enough orthogonal idempotents.
Keywords: Linear representations of groupoids; restriction, inductions and co-induction functors; groupoids-bisets; translation groupoids; Frobenius extensions; Frobenius reciprocity formula.
@article{SIGMA_2019_15_a18,
     author = {Juan Jes\'us Barbar\'an S\'anchez and Laiachi El Kaoutit},
     title = {Linear {Representations} and {Frobenius} {Morphisms} of {Groupoids}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a18/}
}
TY  - JOUR
AU  - Juan Jesús Barbarán Sánchez
AU  - Laiachi El Kaoutit
TI  - Linear Representations and Frobenius Morphisms of Groupoids
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a18/
LA  - en
ID  - SIGMA_2019_15_a18
ER  - 
%0 Journal Article
%A Juan Jesús Barbarán Sánchez
%A Laiachi El Kaoutit
%T Linear Representations and Frobenius Morphisms of Groupoids
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a18/
%G en
%F SIGMA_2019_15_a18
Juan Jesús Barbarán Sánchez; Laiachi El Kaoutit. Linear Representations and Frobenius Morphisms of Groupoids. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a18/

[1] Abrams G. D., “Morita equivalence for rings with local units”, Comm. Algebra, 11 (1983), 801–837 | DOI | MR | Zbl

[2] Ánh P. N., Márki L., “Rees matrix rings”, J. Algebra, 81 (1983), 340–369 | DOI | MR

[3] Ánh P. N., Márki L., “Morita equivalence for rings without identity”, Tsukuba J. Math., 11 (1987), 1–16 | DOI | MR

[4] Bouc S., Biset functors for finite groups, Lecture Notes in Math., 1990, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[5] Brown R., “From groups to groupoids: a brief survey”, Bull. London Math. Soc., 19 (1987), 113–134 | DOI | MR | Zbl

[6] Demazure M., Gabriel P., Groupes algébriques, v. I, {G}éométrie algébrique, généralités, groupes commutatifs, Masson Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970 | MR

[7] El Kaoutit L., “Corings over rings with local units”, Math. Nachr., 282 (2009), 726–747, arXiv: math.RA/0512655 | DOI | MR | Zbl

[8] El Kaoutit L., “On geometrically transitive Hopf algebroids”, J. Pure Appl. Algebra, 222 (2018), 3483–3520, arXiv: 1508.05761 | DOI | MR | Zbl

[9] El Kaoutit L., Kowalzig N., “Morita theory for Hopf algebroids, principal bibundles, and weak equivalences”, Doc. Math., 22 (2017), 551–609, arXiv: 1407.7461 | DOI | MR | Zbl

[10] El Kaoutit L., Spinosa L., “Mackey formula for bisets over groupoids”, J. Algebra Appl. (to appear) , arXiv: 1711.07203 | DOI

[11] Fuller K. R., “On rings whose left modules are direct sums of finitely generated modules”, Proc. Amer. Math. Soc., 54 (1976), 39–44 | DOI | MR | Zbl

[12] Gabriel P., “Des catégories abéliennes”, Bull. Soc. Math. France, 90 (1962), 323–448 | DOI | MR | Zbl

[13] Guay A., Hepburn B., “Symmetry and its formalisms: mathematical aspects”, Philos. Sci., 76 (2009), 160–178 | DOI | MR

[14] Higgins P. J., Notes on categories and groupoids, Van Nostrand Rienhold Mathematical Studies, 32, Van Nostrand Reinhold Co., London–New York–Melbourne, 1971 | MR | Zbl

[15] Howe R., “On Frobenius reciprocity for unipotent algebraic groups over $Q$”, Amer. J. Math., 93 (1971), 163–172 | DOI | MR | Zbl

[16] Jelenc B., “Serre fibrations in the Morita category of topological groupoids”, Topology Appl., 160 (2013), 9–23, arXiv: 1108.5284 | DOI | MR | Zbl

[17] Kadison L., New examples of Frobenius extensions, University Lecture Series, 14, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl

[18] Karoubi M., $K$-theory. An introduction, Classics in Mathematics, Springer-Verlag, Berlin–Heidelberg, 2008 | DOI | MR | Zbl

[19] Kock J., Frobenius algebras and 2D topological quantum field theories, London Mathematical Society Student Texts, 59, Cambridge University Press, Cambridge, 2003 | DOI | MR

[20] Kowalski E., An introduction to the representation theory of groups, Graduate Studies in Mathematics, 155, Amer. Math. Soc., Providence, RI, 2014 | DOI | MR | Zbl

[21] Landsman N. P., “Lie groupoids and Lie algebroids in physics and noncommutative geometry”, J. Geom. Phys., 56 (2006), 24–54, arXiv: math-ph/0506024 | DOI | MR | Zbl

[22] Mac Lane S., Categories for the working mathematician, Graduate Texts in Mathematics, 5, 2nd ed., Springer-Verlag, New York, 1998 | DOI | MR | Zbl

[23] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[24] Mackey G. W., “Induced representations of locally compact groups. II The Frobenius reciprocity theorem”, Ann. of Math., 58 (1953), 193–221 | DOI | MR | Zbl

[25] Mitchell B., Theory of categories, Pure and Applied Mathematics, 17, Academic Press, New York–London, 1965 | MR

[26] Moerdijk I., Mrčun J., “Lie groupoids, sheaves and cohomology”, Poisson Geometry, Deformation Quantisation and Group Representations, London Math. Soc. Lecture Note Ser., 323, Cambridge University Press, Cambridge, 2005, 145–272 | DOI | MR | Zbl

[27] Moore C. C., “On the Frobenius reciprocity theorem for locally compact groups”, Pacific J. Math., 12 (1962), 359–365 | DOI | MR | Zbl

[28] Pysiak L., “Imprimitivity theorem for groupoid representations”, Demonstratio Math., 44 (2011), 29–48, arXiv: 1008.2084 | DOI | MR | Zbl

[29] Renault J., A groupoid approach to $C^{\ast} $-algebras, Lecture Notes in Math., 793, Springer, Berlin, 1980 | DOI | MR | Zbl

[30] Sternberg S., Group theory and physics, Cambridge University Press, Cambridge, 1994 | MR | Zbl

[31] Weinstein A., “Groupoids: unifying internal and external symmetry. A tour through some examples”, Notices Amer. Math. Soc., 43 (1996), 744–752, arXiv: math.RT/9602220 | MR | Zbl