@article{SIGMA_2019_15_a16,
author = {Hans Lundmark and Budor Shuaib},
title = {Ghostpeakons and {Characteristic} {Curves} for the {Camassa{\textendash}Holm,} {Degasperis{\textendash}Procesi} and {Novikov} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a16/}
}
TY - JOUR AU - Hans Lundmark AU - Budor Shuaib TI - Ghostpeakons and Characteristic Curves for the Camassa–Holm, Degasperis–Procesi and Novikov Equations JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a16/ LA - en ID - SIGMA_2019_15_a16 ER -
%0 Journal Article %A Hans Lundmark %A Budor Shuaib %T Ghostpeakons and Characteristic Curves for the Camassa–Holm, Degasperis–Procesi and Novikov Equations %J Symmetry, integrability and geometry: methods and applications %D 2019 %V 15 %U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a16/ %G en %F SIGMA_2019_15_a16
Hans Lundmark; Budor Shuaib. Ghostpeakons and Characteristic Curves for the Camassa–Holm, Degasperis–Procesi and Novikov Equations. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a16/
[1] Beals R., Sattinger D. H., Szmigielski J., “Multi-peakons and a theorem of Stieltjes”, Inverse Problems, 15 (1999), L1–L4, arXiv: solv-int/9903011 | DOI | MR | Zbl
[2] Beals R., Sattinger D. H., Szmigielski J., “Multipeakons and the classical moment problem”, Adv. Math., 154 (2000), 229–257, arXiv: solv-int/9906001 | DOI | MR | Zbl
[3] Brandolese L., “Local-in-space criteria for blowup in shallow water and dispersive rod equations”, Comm. Math. Phys., 330 (2014), 401–414, arXiv: 1210.7782 | DOI | MR | Zbl
[4] Bressan A., Chen G., Zhang Q., “Uniqueness of conservative solutions to the Camassa–Holm equation via characteristics”, Discrete Contin. Dyn. Syst., 35 (2015), 25–42, arXiv: 1401.0312 | DOI | MR | Zbl
[5] Bressan A., Constantin A., “Global conservative solutions of the Camassa–Holm equation”, Arch. Ration. Mech. Anal., 183 (2007), 215–239 | DOI | MR | Zbl
[6] Bressan A., Constantin A., “Global dissipative solutions of the Camassa–Holm equation”, Anal. Appl. (Singap.), 5 (2007), 1–27 | DOI | MR | Zbl
[7] Cai H., Chen G., Chen R. M., Shen Y., “Lipschitz metric for the Novikov equation”, Arch. Ration. Mech. Anal., 229 (2018), 1091–1137, arXiv: 1611.08277 | DOI | MR | Zbl
[8] Camassa R., Holm D. D., “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR | Zbl
[9] Camassa R., Holm D. D., Hyman J. M., “A new integrable shallow water equation”, Adv. Appl. Mech., 31 (1994), 1–33 | DOI | Zbl
[10] Camassa R., Huang J., Lee L., “On a completely integrable numerical scheme for a nonlinear shallow-water wave equation”, J. Nonlinear Math. Phys., 12:1 (2005), 146–162 | DOI | MR | Zbl
[11] Camassa R., Huang J., Lee L., “Integral and integrable algorithms for a nonlinear shallow-water wave equation”, J. Comput. Phys., 216 (2006), 547–572 | DOI | MR | Zbl
[12] Chen G., Chen R. M., Liu Y., “Existence and uniqueness of the global conservative weak solutions for the integrable Novikov equation”, Indiana Univ. Math. J., 67 (2018), 2393–2433, arXiv: 1509.08569 | DOI
[13] Chen R. M., Guo F., Liu Y., Qu C., “Analysis on the blow-up of solutions to a class of integrable peakon equations”, J. Funct. Anal., 270 (2016), 2343–2374 | DOI | MR | Zbl
[14] Chertock A., Liu J. G., Pendleton T., “Convergence analysis of the particle method for the Camassa–Holm equation”, Hyperbolic Problems – Theory, Numerics and Applications, v. 2, Ser. Contemp. Appl. Math. CAM, 18, World Sci. Publishing, Singapore, 2012, 365–373 | DOI | MR | Zbl
[15] Chertock A., Liu J. G., Pendleton T., “Convergence of a particle method and global weak solutions of a family of evolutionary PDEs”, SIAM J. Numer. Anal., 50 (2012), 1–21 | DOI | MR | Zbl
[16] Chertock A., Liu J. G., Pendleton T., “Elastic collisions among peakon solutions for the Camassa–Holm equation”, Appl. Numer. Math., 93 (2015), 30–46 | DOI | MR | Zbl
[17] Coclite G. M., Karlsen K. H., “On the well-posedness of the Degasperis–Procesi equation”, J. Funct. Anal., 233 (2006), 60–91 | DOI | MR | Zbl
[18] Coclite G. M., Karlsen K. H., “On the uniqueness of discontinuous solutions to the Degasperis–Procesi equation”, J. Differential Equations, 234 (2007), 142–160 | DOI | MR | Zbl
[19] Coclite G. M., Karlsen K. H., “Periodic solutions of the Degasperis–Procesi equation: well-posedness and asymptotics”, J. Funct. Anal., 268 (2015), 1053–1077 | DOI | MR | Zbl
[20] Constantin A., “Existence of permanent and breaking waves for a shallow water equation: a geometric approach”, Ann. Inst. Fourier (Grenoble), 50 (2000), 321–362 | DOI | MR | Zbl
[21] Constantin A., Escher J., “Global existence and blow-up for a shallow water equation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303–328 | MR | Zbl
[22] Constantin A., Escher J., “Global weak solutions for a shallow water equation”, Indiana Univ. Math. J., 47 (1998), 1527–1545 | DOI | MR | Zbl
[23] Constantin A., Lannes D., “The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations”, Arch. Ration. Mech. Anal., 192 (2009), 165–186, arXiv: 0709.0905 | DOI | MR | Zbl
[24] Constantin A., Molinet L., “Global weak solutions for a shallow water equation”, Comm. Math. Phys., 211 (2000), 45–61 | DOI | MR | Zbl
[25] Degasperis A., Holm D. D., Hone A. N. W., “A new integrable equation with peakon solutions”, Theoret. and Math. Phys., 133 (2002), 1463–1474, arXiv: nlin.SI/0205023 | DOI | MR
[26] Degasperis A., Procesi M., “Asymptotic integrability”, Symmetry and Perturbation Theory (Rome, 1998), eds. A. Degasperis, G. Gaeta, World Sci. Publ., River Edge, NJ, 1999, 23–37 | MR | Zbl
[27] Dullin H. R., Gottwald G. A., Holm D. D., “An integrable shallow water equation with linear and nonlinear dispersion”, Phys. Rev. Lett., 87 (2001), 194501, 4 pp., arXiv: nlin.CD/0104004 | DOI
[28] Dullin H. R., Gottwald G. A., Holm D. D., “Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves”, Fluid Dynam. Res., 33 (2003), 73–95 | DOI | MR | Zbl
[29] Dullin H. R., Gottwald G. A., Holm D. D., “On asymptotically equivalent shallow water wave equations”, Phys. D, 190 (2004), 1–14, arXiv: nlin.PS/0307011 | DOI | MR | Zbl
[30] Escher J., Liu Y., Yin Z., “Global weak solutions and blow-up structure for the Degasperis–Procesi equation”, J. Funct. Anal., 241 (2006), 457–485 | DOI | MR | Zbl
[31] Geng X., Xue B., “An extension of integrable peakon equations with cubic nonlinearity”, Nonlinearity, 22 (2009), 1847–1856 | DOI | MR | Zbl
[32] Grunert K., Holden H., “The general peakon-antipeakon solution for the Camassa–Holm equation”, J. Hyperbolic Differ. Equ., 13 (2016), 353–380, arXiv: 1502.07686 | DOI | MR | Zbl
[33] Grunert K., Holden H., Raynaud X., “A continuous interpolation between conservative and dissipative solutions for the two-component Camassa–Holm system”, Forum Math. Sigma, 3 (2015), e1, 73 pp., arXiv: 1402.1060 | DOI | MR | Zbl
[34] Himonas A. A., Holliman C., Kenig C., “Construction of 2-peakon solutions and ill-posedness for the Novikov equation”, SIAM J. Math. Anal., 50 (2018), 2968–3006, arXiv: 1708.05759 | DOI | MR | Zbl
[35] Holden H., Raynaud X., “A convergent numerical scheme for the Camassa–Holm equation based on multipeakons”, Discrete Contin. Dyn. Syst., 14 (2006), 505–523 | DOI | MR | Zbl
[36] Holden H., Raynaud X., “Global conservative multipeakon solutions of the Camassa–Holm equation”, J. Hyperbolic Differ. Equ., 4 (2007), 39–64 | DOI | MR | Zbl
[37] Holden H., Raynaud X., “Global conservative solutions of the Camassa–Holm equation – a Lagrangian point of view”, Comm. Partial Differential Equations, 32 (2007), 1511–1549 | DOI | MR | Zbl
[38] Holden H., Raynaud X., “Global dissipative multipeakon solutions of the Camassa–Holm equation”, Comm. Partial Differential Equations, 33 (2008), 2040–2063 | DOI | MR | Zbl
[39] Holden H., Raynaud X., “A numerical scheme based on multipeakons for conservative solutions of the Camassa–Holm equation”, Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008, 873–881 | DOI | MR | Zbl
[40] Holden H., Raynaud X., “Dissipative solutions for the Camassa–Holm equation”, Discrete Contin. Dyn. Syst., 24 (2009), 1047–1112 | DOI | MR | Zbl
[41] Hone A. N. W., Lundmark H., Szmigielski J., “Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa–Holm type equation”, Dyn. Partial Differ. Equ., 6 (2009), 253–289, arXiv: 0903.3663 | DOI | MR | Zbl
[42] Hone A. N. W., Wang J. P., “Integrable peakon equations with cubic nonlinearity”, J. Phys. A: Math. Theor., 41 (2008), 372002, 10 pp., arXiv: 0805.4310 | DOI | MR | Zbl
[43] Jiang Z., Ni L., “Blow-up phenomenon for the integrable Novikov equation”, J. Math. Anal. Appl., 385 (2012), 551–558 | DOI | MR | Zbl
[44] Jiang Z., Ni L., Zhou Y., “Wave breaking of the Camassa–Holm equation”, J. Nonlinear Sci., 22 (2012), 235–245 | DOI | MR | Zbl
[45] Johnson R. S., “Camassa–Holm, Korteweg–de Vries and related models for water waves”, J. Fluid Mech., 455 (2002), 63–82 | DOI | MR | Zbl
[46] Johnson R. S., “The classical problem of water waves: a reservoir of integrable and nearly-integrable equations”, J. Nonlinear Math. Phys., 10:1 (2003), 72–92 | DOI | MR | Zbl
[47] Kardell M., Lundmark H., Peakon-antipeakon solutions of the Novikov equation, in preparation
[48] Lai S., Li N., Wu Y., “The existence of global strong and weak solutions for the Novikov equation”, J. Math. Anal. Appl., 399 (2013), 682–691 | DOI | MR | Zbl
[49] Li Y. A., Olver P. J., “Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation”, J Differential Equations, 162 (2000), 27–63 | DOI | MR | Zbl
[50] Liu Y., Yin Z., “Global existence and blow-up phenomena for the Degasperis–Procesi equation”, Comm. Math. Phys., 267 (2006), 801–820 | DOI | MR | Zbl
[51] Liu Y., Yin Z., “On the blow-up phenomena for the Degasperis–Procesi equation”, Int. Math. Res. Not., 2007 (2007), rnm117, 22 pp. | DOI | MR | Zbl
[52] Lundmark H., “Formation and dynamics of shock waves in the Degasperis–Procesi equation”, J. Nonlinear Sci., 17 (2007), 169–198 | DOI | MR | Zbl
[53] Lundmark H., Szmigielski J., “Multi-peakon solutions of the Degasperis–Procesi equation”, Inverse Problems, 19 (2003), 1241–1245, arXiv: nlin.SI/0503033 | DOI | MR | Zbl
[54] Lundmark H., Szmigielski J., “Degasperis–Procesi peakons and the discrete cubic string”, Int. Math. Res. Pap., 2005 (2005), 53–116, arXiv: nlin.SI/0503036 | DOI | MR | Zbl
[55] Lundmark H., Szmigielski J., An inverse spectral problem related to the Geng–Xue two-component peakon equation, Mem. Amer. Math. Soc., 244, 2016, viii+87 pp., arXiv: 1304.0854 | DOI | MR
[56] Lundmark H., Szmigielski J., “Dynamics of interlacing peakons (and shockpeakons) in the Geng–Xue equation”, J. Integrable Syst., 2 (2017), xyw014, 65 pp., arXiv: 1605.02805 | DOI | MR | Zbl
[57] Matsuno Y., “The peakon limit of the $N$-soliton solution of the Camassa–Holm equation”, J. Phys. Soc. Japan, 76 (2007), 034003, 8 pp., arXiv: nlin.SI/0701051 | DOI
[58] McKean H. P., “Breakdown of a shallow water equation”, Asian J. Math., 2 (1998), 867–874 | DOI | MR | Zbl
[59] McKean H. P., “Breakdown of the Camassa–Holm equation”, Comm. Pure Appl. Math., 57 (2004), 416–418 | DOI | MR | Zbl
[60] Molinet L., “On well-posedness results for Camassa–Holm equation on the line: a survey”, J. Nonlinear Math. Phys., 11 (2004), 521–533 | DOI | MR | Zbl
[61] Ni L., Zhou Y., “Well-posedness and persistence properties for the Novikov equation”, J. Differential Equations, 250 (2011), 3002–3021 | DOI | MR | Zbl
[62] Novikov V., “Generalizations of the Camassa–Holm equation”, J. Phys. A: Math. Theor., 42 (2009), 342002, 14 pp., arXiv: 0905.2219 | DOI | MR | Zbl
[63] Rodríguez-Blanco G., “On the Cauchy problem for the Camassa–Holm equation”, Nonlinear Anal., 46 (2001), 309–327 | DOI | MR | Zbl
[64] Shuaib B., Lundmark H., Non-interlacing peakon solutions of the Geng–Xue equation, arXiv: 1812.09173
[65] Szmigielski J., Zhou L., “Colliding peakons and the formation of shocks in the Degasperis–Procesi equation”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 469 (2013), 20130379, 19 pp., arXiv: 1302.1377 | DOI | MR | Zbl
[66] Szmigielski J., Zhou L., “Peakon-antipeakon interactions in the Degasperis–Procesi equation”, Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., 593, Amer. Math. Soc., Providence, RI, 2013, 83–107, arXiv: 1301.0171 | DOI | MR | Zbl
[67] Tığlay F., “The periodic Cauchy problem for Novikov's equation”, Int. Math. Res. Not., 2011 (2011), 4633–4648, arXiv: 1009.1820 | DOI
[68] Wu X., Guo B., “Global well-posedness for the periodic Novikov equation with cubic nonlinearity”, Appl. Anal., 95 (2016), 405–425 | DOI | MR | Zbl
[69] Wu X., Yin Z., “Global weak solutions for the Novikov equation”, J. Phys. A: Math. Theor., 44 (2011), 055202, 17 pp. | DOI | MR | Zbl
[70] Wu X., Yin Z., “Well-posedness and global existence for the Novikov equation”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11 (2012), 707–727 | DOI | MR | Zbl
[71] Xin Z., Zhang P., “On the weak solutions to a shallow water equation”, Comm. Pure Appl. Math., 53 (2000), 1411–1433 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[72] Xin Z., Zhang P., “On the uniqueness and large time behavior of the weak solutions to a shallow water equation”, Comm. Partial Differential Equations, 27 (2002), 1815–1844 | DOI | MR | Zbl
[73] Yan W., Li Y., Zhang Y., “The Cauchy problem for the integrable Novikov equation”, J. Differential Equations, 253 (2012), 298–318 | DOI | MR | Zbl
[74] Yin Z., “On the Cauchy problem for an integrable equation with peakon solutions”, Illinois J. Math., 47 (2003), 649–666 | MR | Zbl
[75] Zhou Y., “Wave breaking for a shallow water equation”, Nonlinear Anal., 57 (2004), 137–152 | DOI | MR | Zbl