The $q$-Borel Sum of Divergent Basic Hypergeometric Series ${}_r\varphi_s(a;b;q,x)$
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the divergent basic hypergeometric series which is a $q$-analog of divergent hypergeometric series. This series formally satisfies the linear $q$-difference equation. In this paper, for that equation, we give an actual solution which admits basic hypergeometric series as a $q$-Gevrey asymptotic expansion. Such an actual solution is obtained by using $q$-Borel summability, which is a $q$-analog of Borel summability. Our result shows a $q$-analog of the Stokes phenomenon. Additionally, we show that letting $q\to1$ in our result gives the Borel sum of classical hypergeometric series. The same problem was already considered by Dreyfus, but we note that our result is remarkably different from his one.
Keywords: basic hypergeometric series; $q$-difference equation; divergent power series solution; $q$-Borel summability; $q$-Stokes phenomenon.
@article{SIGMA_2019_15_a15,
     author = {Shunya Adachi},
     title = {The $q${-Borel} {Sum} of {Divergent} {Basic} {Hypergeometric} {Series} ${}_r\varphi_s(a;b;q,x)$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a15/}
}
TY  - JOUR
AU  - Shunya Adachi
TI  - The $q$-Borel Sum of Divergent Basic Hypergeometric Series ${}_r\varphi_s(a;b;q,x)$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a15/
LA  - en
ID  - SIGMA_2019_15_a15
ER  - 
%0 Journal Article
%A Shunya Adachi
%T The $q$-Borel Sum of Divergent Basic Hypergeometric Series ${}_r\varphi_s(a;b;q,x)$
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a15/
%G en
%F SIGMA_2019_15_a15
Shunya Adachi. The $q$-Borel Sum of Divergent Basic Hypergeometric Series ${}_r\varphi_s(a;b;q,x)$. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a15/

[1] Adams C. R., “On the linear ordinary $q$-difference equation”, Ann. of Math., 30 (1929), 195–205 | DOI | MR | Zbl

[2] Askey R., “The $q$-gamma and $q$-beta functions”, Appl. Anal., 8 (1978), 125–141 | DOI | MR | Zbl

[3] Di Vizio L., Zhang C., “On $q$-summation and confluence”, Ann. Inst. Fourier (Grenoble), 59 (2009), 347–392, arXiv: 0709.1610 | DOI | MR | Zbl

[4] Dreyfus T., “Building meromorphic solutions of $q$-difference equations using a Borel–Laplace summation”, Int. Math. Res. Not., 2015 (2015), 6562–6587, arXiv: 1401.4564 | DOI | MR | Zbl

[5] Dreyfus T., “Confluence of meromorphic solutions of $q$-difference equations”, Ann. Inst. Fourier (Grenoble), 65 (2015), 431–507, arXiv: 1307.7085 | DOI | MR | Zbl

[6] Dreyfus T., Eloy A., “$q$-Borel–Laplace summation for $q$-difference equations with two slopes”, J. Difference Equ. Appl., 22 (2016), 1501–1511, arXiv: 1501.02994 | DOI | MR | Zbl

[7] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[8] Ichinobe K., “The Borel sum of divergent Barnes hypergeometric series and its application to a partial differential equation”, Publ. Res. Inst. Math. Sci., 37 (2001), 91–117 | DOI | MR | Zbl

[9] Morita T., “The Stokes phenomenon for the $q$-difference equation satisfied by the basic hypergeometric series ${}_3\varphi_1(a_1,a_2,a_3;b_1;q,x)$”, Novel Development of Nonlinear Discrete Integrable Systems, RIMS Kôkyûroku Bessatsu, B47, Res. Inst. Math. Sci. (RIMS), Kyoto, 2014, 117–126, arXiv: 1402.3903 | MR

[10] Ramis J.-P., “About the growth of entire functions solutions of linear algebraic $q$-difference equations”, Ann. Fac. Sci. Toulouse Math., 1 (1992), 53–94 | DOI | MR | Zbl

[11] Sauloy J., “Systèmes aux $q$-différences singuliers réguliers: classification, matrice de connexion et monodromie”, Ann. Inst. Fourier (Grenoble), 50 (2000), 1021–1071, arXiv: math.QA/0211007 | DOI | MR | Zbl

[12] Slater L. J., “General transformations of bilateral series”, Quart. J. Math., 3 (1952), 73–80 | DOI | MR | Zbl

[13] Zhang C., “Une sommation discrète pour des équations aux $q$-différences linéaires et à coefficients analytiques: théorie générale et exemples”, Differential Equations and the Stokes Phenomenon, World Sci. Publ., River Edge, NJ, 2002, 309–329 | DOI | MR | Zbl

[14] Zhang C., “Remarks on some basic hypergeometric series”, Theory and Applications of Special Functions, Dev. Math., 13, Springer, New York, 2005, 479–491 | DOI | MR | Zbl