@article{SIGMA_2019_15_a15,
author = {Shunya Adachi},
title = {The $q${-Borel} {Sum} of {Divergent} {Basic} {Hypergeometric} {Series} ${}_r\varphi_s(a;b;q,x)$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a15/}
}
Shunya Adachi. The $q$-Borel Sum of Divergent Basic Hypergeometric Series ${}_r\varphi_s(a;b;q,x)$. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a15/
[1] Adams C. R., “On the linear ordinary $q$-difference equation”, Ann. of Math., 30 (1929), 195–205 | DOI | MR | Zbl
[2] Askey R., “The $q$-gamma and $q$-beta functions”, Appl. Anal., 8 (1978), 125–141 | DOI | MR | Zbl
[3] Di Vizio L., Zhang C., “On $q$-summation and confluence”, Ann. Inst. Fourier (Grenoble), 59 (2009), 347–392, arXiv: 0709.1610 | DOI | MR | Zbl
[4] Dreyfus T., “Building meromorphic solutions of $q$-difference equations using a Borel–Laplace summation”, Int. Math. Res. Not., 2015 (2015), 6562–6587, arXiv: 1401.4564 | DOI | MR | Zbl
[5] Dreyfus T., “Confluence of meromorphic solutions of $q$-difference equations”, Ann. Inst. Fourier (Grenoble), 65 (2015), 431–507, arXiv: 1307.7085 | DOI | MR | Zbl
[6] Dreyfus T., Eloy A., “$q$-Borel–Laplace summation for $q$-difference equations with two slopes”, J. Difference Equ. Appl., 22 (2016), 1501–1511, arXiv: 1501.02994 | DOI | MR | Zbl
[7] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[8] Ichinobe K., “The Borel sum of divergent Barnes hypergeometric series and its application to a partial differential equation”, Publ. Res. Inst. Math. Sci., 37 (2001), 91–117 | DOI | MR | Zbl
[9] Morita T., “The Stokes phenomenon for the $q$-difference equation satisfied by the basic hypergeometric series ${}_3\varphi_1(a_1,a_2,a_3;b_1;q,x)$”, Novel Development of Nonlinear Discrete Integrable Systems, RIMS Kôkyûroku Bessatsu, B47, Res. Inst. Math. Sci. (RIMS), Kyoto, 2014, 117–126, arXiv: 1402.3903 | MR
[10] Ramis J.-P., “About the growth of entire functions solutions of linear algebraic $q$-difference equations”, Ann. Fac. Sci. Toulouse Math., 1 (1992), 53–94 | DOI | MR | Zbl
[11] Sauloy J., “Systèmes aux $q$-différences singuliers réguliers: classification, matrice de connexion et monodromie”, Ann. Inst. Fourier (Grenoble), 50 (2000), 1021–1071, arXiv: math.QA/0211007 | DOI | MR | Zbl
[12] Slater L. J., “General transformations of bilateral series”, Quart. J. Math., 3 (1952), 73–80 | DOI | MR | Zbl
[13] Zhang C., “Une sommation discrète pour des équations aux $q$-différences linéaires et à coefficients analytiques: théorie générale et exemples”, Differential Equations and the Stokes Phenomenon, World Sci. Publ., River Edge, NJ, 2002, 309–329 | DOI | MR | Zbl
[14] Zhang C., “Remarks on some basic hypergeometric series”, Theory and Applications of Special Functions, Dev. Math., 13, Springer, New York, 2005, 479–491 | DOI | MR | Zbl