A Geometric Approach to the Concept of Extensivity in Thermodynamics
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents a rigorous treatment of the concept of extensivity in equilibrium thermodynamics from a geometric point of view. This is achieved by endowing the manifold of equilibrium states of a system with a smooth atlas that is compatible with the pseudogroup of transformations on a vector space that preserve the radial vector field. The resulting geometric structure allows for accurate definitions of extensive differential forms and scaling, and the well-known relationship between both is reproduced. This structure is represented by a global vector field that is locally written as a radial one. The submanifolds that are transversal to it are embedded, and locally defined by extensive functions.
Keywords: homogeneous functions; extensive variables; equilibrium thermodynamics.
@article{SIGMA_2019_15_a14,
     author = {Miguel \'Angel Garc{\'\i}a-Ariza},
     title = {A {Geometric} {Approach} to the {Concept} of {Extensivity} {in~Thermodynamics}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a14/}
}
TY  - JOUR
AU  - Miguel Ángel García-Ariza
TI  - A Geometric Approach to the Concept of Extensivity in Thermodynamics
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a14/
LA  - en
ID  - SIGMA_2019_15_a14
ER  - 
%0 Journal Article
%A Miguel Ángel García-Ariza
%T A Geometric Approach to the Concept of Extensivity in Thermodynamics
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a14/
%G en
%F SIGMA_2019_15_a14
Miguel Ángel García-Ariza. A Geometric Approach to the Concept of Extensivity in Thermodynamics. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a14/

[1] Anosov D. V., Aranson S. K., Arnold V. I., Bronshtein I. U., Grines V. Z., Il'yashenko Yu. S., Ordinary differential equations and smooth dynamical systems, Springer-Verlag, Berlin, 1997 | MR | Zbl

[2] Belgiorno F., “Quasi-homogeneous thermodynamics and black holes”, J. Math. Phys., 44 (2003), 1089–1128, arXiv: gr-qc/0210021 | DOI | MR | Zbl

[3] Belgiorno F., “Homogeneity: from {C}arathéodory's approach to Gibbs thermodynamics”, Nuovo Cimento Soc. Ital. Fis. B, 125 (2010), 271–296 | MR

[4] Bravetti A., “Contact geometry and thermodynamics”, Int. J. Geom. Methods Mod. Phys., 16 (2019), 1940003, 51 pp. | DOI | MR

[5] Bravetti A., Nettel F., “Thermodynamic curvature and ensemble nonequivalence”, Phys. Rev. D, 90 (2014), 044064, 13 pp., arXiv: 1208.0399 | DOI

[6] Brody D. C., Hook D. W., “Information geometry in vapour-liquid equilibrium”, J. Phys. A: Math. Theor., 42 (2009), 023001, 33 pp. | DOI | MR | Zbl

[7] Callen H. B., Thermodynamics and an introduction to thermostatistics, John Wiley Sons, New York, 1985

[8] Carathéodory C., “Untersuchungen über die Grundlagen der Thermodynamik”, Math. Ann., 67 (1909), 355–386 | DOI | MR

[9] Crooks G. E., “Measuring thermodynamic length”, Phys. Rev. Lett., 99 (2007), 100602, 4 pp., arXiv: 0706.0559 | DOI

[10] Edelen D. G. B., Applied exterior calculus, Dover Publications, Inc., Mineola, NY, 2005 | MR | Zbl

[11] García Ariza M. A., “Degenerate Hessian structures on radiant manifolds”, Int. J. Geom. Methods Mod. Phys., 15 (2018), 1850087, 15 pp., arXiv: 1503.00689 | DOI | MR | Zbl

[12] Goldman W., “Two examples of affine manifolds”, Pacific J. Math., 94 (1981), 327–330 | DOI | MR | Zbl

[13] Goldman W., Hirsch M. W., “The radiance obstruction and parallel forms on affine manifolds”, Trans. Amer. Math. Soc., 286 (1984), 629–649 | DOI | MR | Zbl

[14] Hermann R., Geometry, physics, and systems, Pure and Applied Mathematics, 18, Marcel Dekker, Inc., New York, 1973 | MR | Zbl

[15] Lee J. M., Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, 2nd ed., Springer, New York, 2013 | DOI | MR | Zbl

[16] Mrugała R., Nulton J. D., Schön J. C., Salamon P., “Contact structure in thermodynamic theory”, Rep. Math. Phys., 29 (1991), 109–121 | DOI | MR | Zbl

[17] Preston S., Vargo J., “Indefinite metric of R Mrugała and the geometry of thermodynamical phase space”, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur., 86 (2008), 1–12, arXiv: math.DG/0509267 | DOI

[18] Quevedo H., “Geometrothermodynamics”, J. Math. Phys., 48 (2007), 013506, 14 pp., arXiv: physics/0604164 | DOI | MR | Zbl

[19] Quevedo H., Quevedo M. N., Sánchez A., “Homogeneity and thermodynamic identities in geometrothermodynamics”, Eur. Phys. J. C, 77 (2017), 158, 4 pp., arXiv: 1701.06702 | DOI | MR

[20] Quevedo H., Sánchez A., Taj S., Vázquez A., “Curvature as a measure of the thermodynamic interaction”, J. Korean Phys. Soc., 57 (2010), 646–650, arXiv: 1011.0122 | DOI

[21] Quevedo H., Sánchez A., Taj S., Vázquez A., “Phase transitions in geometrothermodynamics”, Gen. Relativity Gravitation, 43 (2011), 1153–1165, arXiv: 1010.5599 | DOI | MR | Zbl

[22] Ruppeiner G., “Thermodynamic curvature measures interactions”, Amer. J. Phys., 78 (2010), 1170–1180, arXiv: 1007.2160 | DOI

[23] Saurel P., “On integrating factors”, Ann. of Math., 6 (1905), 185–189 | DOI | MR | Zbl

[24] van der Schaft A., Maschke B., “Geometry of thermodynamic processes”, Entropy, 20 (2018), 925, 23 pp., arXiv: 1811.04227 | DOI

[25] von Grudzinski O., Quasihomogeneous distributions, North-Holland Mathematics Studies, 165, North-Holland Publishing Co., Amsterdam, 1991 | MR | Zbl