@article{SIGMA_2019_15_a13,
author = {Miranda C. N. Cheng and Paul De Lange and Daniel P. Z. Whalen},
title = {Generalised {Umbral} {Moonshine}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a13/}
}
Miranda C. N. Cheng; Paul De Lange; Daniel P. Z. Whalen. Generalised Umbral Moonshine. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a13/
[1] Altschuler D., Coste A., Maillard J. M., “Representation theory of twisted group double”, Ann. Fond. Louis de Broglie, 29 (2004), 681–694, arXiv: hep-th/0309257 | MR | Zbl
[2] Anagiannis V., Cheng M. C.N., Harrison S. M., $K3$ elliptic genus and an umbral moonshine module, arXiv: 1709.01952 | MR
[3] Bántay P., “Orbifolds, Hopf algebras, and the moonshine”, Lett. Math. Phys., 22 (1991), 187–194 | DOI | MR
[4] Borcherds R. E., “Vertex algebras, Kac–Moody algebras, and the monster”, Proc. Nat. Acad. Sci. USA, 83 (1986), 3068–3071 | DOI | MR
[5] Borcherds R. E., “Monstrous moonshine and monstrous Lie superalgebras”, Invent. Math., 109 (1992), 405–444 | DOI | MR | Zbl
[6] Brown K. S., Cohomology of groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York, 1994 | DOI | MR
[7] Cappelli A., Itzykson C., Zuber J. B., “The ${\rm A}$-${\rm D}$-${\rm E}$ classification of minimal and $A^{(1)}_1$ conformal invariant theories”, Comm. Math. Phys., 113 (1987), 1–26 | DOI | MR | Zbl
[8] Carnahan S., “Generalized moonshine I: Genus-zero functions”, Algebra Number Theory, 4 (2010), 649–679, arXiv: 0812.3440 | DOI | MR | Zbl
[9] Carnahan S., “Generalized moonshine, II: Borcherds products”, Duke Math. J., 161 (2012), 893–950, arXiv: 0908.4223 | DOI | MR | Zbl
[10] Carnahan S., Generalized moonshine, IV: Monstrous Lie algebras, arXiv: 1208.6254 | MR
[11] Carnahan S., Miyamoto M., Regularity of fixed-point vertex operator subalgebras, arXiv: 1603.05645
[12] Cheng M. C. N., “$K3$ surfaces, ${\mathcal N}=4$ dyons and the Mathieu group $M_{24}$”, Commun. Number Theory Phys., 4 (2010), 623–657, arXiv: 1005.5415 | DOI | MR | Zbl
[13] Cheng M. C. N., Duncan J. F. R., “On Rademacher sums, the largest Mathieu group and the holographic modularity of moonshine”, Commun. Number Theory Phys., 6 (2012), 697–758, arXiv: 1110.3859 | DOI | MR | Zbl
[14] Cheng M. C. N., Duncan J. F. R., “On the discrete groups of Mathieu moonshine”, Perspectives in Representation Theory, Contemp. Math., 610, Amer. Math. Soc., Providence, RI, 2014, 65–78, arXiv: 1212.0906 | DOI | MR | Zbl
[15] Cheng M. C. N., Duncan J. F. R., Optimal mock Jacobi theta functions, arXiv: 1605.04480
[16] Cheng M. C. N., Duncan J. F. R., Meromorphic Jacobi forms of half-integral index and umbral moonshine modules, arXiv: 1707.01336 | MR
[17] Cheng M. C. N., Duncan J. F. R., Harvey J. A., “Umbral moonshine”, Commun. Number Theory Phys., 8 (2014), 101–242, arXiv: 1204.2779 | DOI | MR | Zbl
[18] Cheng M. C. N., Duncan J. F. R., Harvey J. A., “Umbral moonshine and the Niemeier lattices”, Res. Math. Sci., 1, 2014, 3, 81 pp., arXiv: 1307.5793 | DOI | MR
[19] Cheng M. C. N., Duncan J. F. R., Harvey J. A., “Weight one Jacobi forms and umbral moonshine”, J. Phys. A: Math. Theor., 51 (2018), 104002, 37 pp., arXiv: 1703.03968 | DOI | MR | Zbl
[20] Cheng M. C. N., Ferrari F., Harrison S. M., Paquette N. M., “Landau–Ginzburg orbifolds and symmetries of ${K}3$ CFTs”, J. High Energy Phys., 2017:1 (2017), 046, 49 pp., arXiv: 1512.04942 | DOI | MR
[21] Cheng M. C. N., Harrison S., “Umbral moonshine and $K3$ surfaces”, Comm. Math. Phys., 339 (2015), 221–261, arXiv: 1406.0619 | DOI | MR | Zbl
[22] Conway J. H., Norton S. P., “Monstrous moonshine”, Bull. London Math. Soc., 11 (1979), 308–339 | DOI | MR | Zbl
[23] Dabholkar A., Murthy S., Zagier D., Quantum black holes, wall crossing, and mock modular forms, arXiv: 1208.4074
[24] Dijkgraaf R., Pasquier V., Roche P., “Quasi Hopf algebras, group cohomology and orbifold models”, Nuclear Phys. B Proc. Suppl., 18B (1990), 60–72 | DOI | MR | Zbl
[25] Dijkgraaf R., Vafa C., Verlinde E., Verlinde H., “The operator algebra of orbifold models”, Comm. Math. Phys., 123 (1989), 485–526 | DOI | MR | Zbl
[26] Dijkgraaf R., Witten E., “Topological gauge theories and group cohomology”, Comm. Math. Phys., 129 (1990), 393–429 | DOI | MR | Zbl
[27] Dixon L., Ginsparg P., Harvey J., “Beauty and the beast: superconformal symmetry in a Monster module”, Comm. Math. Phys., 119 (1988), 221–241 | DOI | MR | Zbl
[28] Dixon L., Harvey J. A., Vafa C., Witten E., “Strings on orbifolds”, Nuclear Phys. B, 261 (1985), 678–686 | DOI | MR
[29] Dixon L., Harvey J. A., Vafa C., Witten E., “Strings on orbifolds. II”, Nuclear Phys. B, 274 (1986), 285–314 | DOI | MR
[30] Dong C., Li H., Mason G., “Modular-invariance of trace functions in orbifold theory and generalized moonshine”, Comm. Math. Phys., 214 (2000), 1–56, arXiv: q-alg/9703016 | DOI | MR | Zbl
[31] Drinfel'd V. G., “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR
[32] Duncan J. F. R., Griffin M. J., Ono K., “Proof of the umbral moonshine conjecture”, Res. Math. Sci., 2 (2015), 26, 47 pp., arXiv: 1406.0571 | DOI | MR | Zbl
[33] Duncan J. F. R., Harvey J. A., “The umbral moonshine module for the unique unimodular Niemeier root system”, Algebra Number Theory, 11 (2017), 505–535, arXiv: 1412.8191 | DOI | MR | Zbl
[34] Duncan J. F. R., O'Desky A., “Super vertex algebras, meromorphic Jacobi forms and umbral moonshine”, J. Algebra, 515 (2018), 389–407, arXiv: 1705.09333 | DOI | MR | Zbl
[35] Eguchi T., Hikami K., “Note on twisted elliptic genus of $K3$ surface”, Phys. Lett. B, 694 (2011), 446–455, arXiv: 1008.4924 | DOI | MR
[36] Eguchi T., Ooguri H., Tachikawa Y., “Notes on the $K3$ surface and the Mathieu group $M_{24}$”, Exp. Math., 20 (2011), 91–96, arXiv: 1004.0956 | DOI | MR | Zbl
[37] Eichler M., Zagier D., The theory of Jacobi forms, Progress in Mathematics, 55, Birkhäuser Boston, Inc., Boston, MA, 1985 | DOI | MR | Zbl
[38] Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the monster, Pure and Applied Mathematics, 134, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl
[39] Frenkel I. B., Lepowsky J., Meurman A., “A natural representation of the Fischer–Griess monster with the modular function $J$ as character”, Proc. Nat. Acad. Sci. USA, 81 (1984), 3256–3260 | DOI | MR | Zbl
[40] Frenkel I. B., Lepowsky J., Meurman A., “A moonshine module for the monster”, Vertex Operators in Mathematics and Physics (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., 3, Springer, New York, 1985, 231–273 | DOI | MR
[41] Gaberdiel M. R., Hohenegger S., Volpato R., “Mathieu twining characters for $K3$”, J. High Energy Phys., 2010:9 (2010), 058, 20 pp., arXiv: 1006.0221 | DOI | MR | Zbl
[42] Gaberdiel M. R., Hohenegger S., Volpato R., “Mathieu moonshine in the elliptic genus of $K3$”, J. High Energy Phys., 2010:10 (2010), 062, 24 pp., arXiv: 1008.3778 | DOI | MR | Zbl
[43] Gaberdiel M. R., Persson D., Ronellenfitsch H., Volpato R., “Generalized Mathieu moonshine”, Commun. Number Theory Phys., 7 (2013), 145–223, arXiv: 1211.7074 | DOI | MR | Zbl
[44] Gannon T., “Much ado about Mathieu”, Adv. Math., 301 (2016), 322–358, arXiv: 1211.5531 | DOI | MR | Zbl
[45] Griffin M. J., Mertens M. H., “A proof of the Thompson moonshine conjecture”, Res. Math. Sci., 3 (2016), 36, 32 pp., arXiv: 1607.03078 | DOI | MR | Zbl
[46] Harvey J. A., Murthy S., “Moonshine in fivebrane spacetimes”, J. High Energy Phys., 2014:1 (2014), 146, 29 pp., arXiv: 1307.7717 | DOI | MR | Zbl
[47] Harvey J. A., Murthy S., Nazaroglu C., “ADE double scaled little string theories, mock modular forms and umbral moonshine”, J. High Energy Phys., 2015:5 (2015), 126, 57 pp., arXiv: 1410.6174 | DOI
[48] Höhn G., Generalized moonshine for the baby monster, 2003
[49] Kachru S., Paquette N. M., Volpato R., “3D string theory and umbral moonshine”, J. Phys. A: Math. Theor., 50 (2017), 404003, 21 pp., arXiv: 1603.07330 | DOI | MR
[50] Mason G., “Finite groups and modular functions (with an appendix by S.P. Norton)”, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., 47, Amer. Math. Soc., Providence, RI, 1987, 181–210 | DOI | MR
[51] Norton S., “From moonshine to the monster”, Proceedings on {M}oonshine and Related Topics (Montréal, QC, 1999), CRM Proc. Lecture Notes, 30, Amer. Math. Soc., Providence, RI, 2001, 163–171 | DOI | MR | Zbl
[52] Paquette N. M., Persson D., Volpato R., “Monstrous BPS-algebras and the superstring origin of moonshine”, Commun. Number Theory Phys., 10 (2016), 433–526, arXiv: 1601.05412 | DOI | MR | Zbl
[53] Shimura G., “On modular forms of half integral weight”, Ann. of Math., 97 (1973), 440–481 | DOI | MR | Zbl
[54] Tuite M. P., “Generalised moonshine and abelian orbifold constructions”, Moonshine, the Monster, and Related Topics (South Hadley, MA, 1994), Contemp. Math., 193, Amer. Math. Soc., Providence, RI, 1996, 353–368, arXiv: hep-th/9412036 | DOI | MR | Zbl
[55] Whalen D., Vector-valued Rademacher sums and automorphic integrals, arXiv: 1406.0571
[56] Zhu Y., “Modular invariance of characters of vertex operator algebras”, J. Amer. Math. Soc., 9 (1996), 237–302 | DOI | MR | Zbl
[57] Zwegers S., Mock theta functions, Ph.D. Thesis, Utrecht University, 2002, arXiv: 0807.4834 | MR | Zbl