Block-Separation of Variables: a Form of Partial Separation for Natural Hamiltonians
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study twisted products $H=\alpha^rH_r$ of natural autonomous Hamiltonians $H_r$, each one depending on a separate set, called here separate $r$-block, of variables. We show that, when the twist functions $\alpha^r$ are a row of the inverse of a block-Stäckel matrix, the dynamics of $H$ reduces to the dynamics of the $H_r$, modified by a scalar potential depending only on variables of the corresponding $r$-block. It is a kind of partial separation of variables. We characterize this block-separation in an invariant way by writing in block-form classical results of Stäckel separation of variables. We classify the block-separable coordinates of $\mathbb E^3$.
Keywords: Stäckel systems; partial separation of variables; position-dependent time parametrisation.
@article{SIGMA_2019_15_a12,
     author = {Claudia Maria Chanu and Giovanni Rastelli},
     title = {Block-Separation of {Variables:} a {Form} of {Partial} {Separation} for {Natural} {Hamiltonians}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a12/}
}
TY  - JOUR
AU  - Claudia Maria Chanu
AU  - Giovanni Rastelli
TI  - Block-Separation of Variables: a Form of Partial Separation for Natural Hamiltonians
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a12/
LA  - en
ID  - SIGMA_2019_15_a12
ER  - 
%0 Journal Article
%A Claudia Maria Chanu
%A Giovanni Rastelli
%T Block-Separation of Variables: a Form of Partial Separation for Natural Hamiltonians
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a12/
%G en
%F SIGMA_2019_15_a12
Claudia Maria Chanu; Giovanni Rastelli. Block-Separation of Variables: a Form of Partial Separation for Natural Hamiltonians. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a12/

[1] Benenti S., “Intrinsic characterization of the variable separation in the Hamilton–Jacobi equation”, J. Math. Phys., 38 (1997), 6578–6602 | DOI | MR | Zbl

[2] Benenti S., Chanu C., Rastelli G., “The super-separability of the three-body inverse-square Calogero system”, J. Math. Phys., 41 (2000), 4654–4678 | DOI | MR | Zbl

[3] Bolsinov A. V., Fomenko A. T., Integrable Hamiltonian systems. Geometry, topology, classification, Boca Raton, FL, 2004 | DOI | MR

[4] Boyer C. P., Kalnins E. G., Miller Jr. W., “Separable coordinates for four-dimensional Riemannian spaces”, Comm. Math. Phys., 59 (1978), 285–302 | DOI | MR | Zbl

[5] Broadbridge P., Chanu C. M., Miller Jr. W., “Solutions of Helmholtz and Schrödinger equations with side condition and nonregular separation of variables”, SIGMA, 8 (2012), 089, 31 pp., arXiv: 1209.2019 | DOI | MR | Zbl

[6] Chanu C., “Geometry of non-regular separation”, Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 305–317 | DOI | MR | Zbl

[7] Chanu C., Degiovanni L., Rastelli G., “Three and four-body systems in one dimension: integrability, superintegrability and discrete symmetries”, Regul. Chaotic Dyn., 16 (2011), 496–503, arXiv: 1309.0089 | DOI | MR | Zbl

[8] Chanu C., Degiovanni L., Rastelli G., “Generalizations of a method for constructing first integrals of a class of natural Hamiltonians and some remarks about quantization”, J. Phys. Conf. Ser., 343 (2012), 012101, 15 pp., arXiv: 1111.0030 | DOI

[9] Chanu C., Rastelli G., “Eigenvalues of Killing tensors and separable webs on Riemannian and pseudo-Riemannian manifolds”, SIGMA, 3 (2007), 021, 21 pp., arXiv: nlin.SI/0612042 | DOI | MR | Zbl

[10] Cochran C. M., McLenaghan R. G., Smirnov R. G., “Equivalence problem for the orthogonal webs on the 3-sphere”, J. Math. Phys., 52 (2011), 053509, 22 pp., arXiv: 1009.4244 | DOI | MR | Zbl

[11] Degiovanni L., Rastelli G., “Complex variables for separation of the Hamilton–Jacobi equation on real pseudo-Riemannian manifolds”, J. Math. Phys., 48 (2007), 073519, 23 pp., arXiv: nlin.SI/0612051 | DOI | MR | Zbl

[12] Di Pirro G. A., “Sugli integrali primi quadratici delle equazioni della meccanica”, Ann. Mat. Pura Appl., 24 (1896), 315–334 | DOI | Zbl

[13] Eisenhart L. P., “Separable systems of Stäckel”, Ann. of Math., 35 (1934), 284–305 | DOI | MR

[14] Eisenhart L. P., “Stäckel systems in conformal Euclidean space”, Ann. of Math., 36 (1935), 57–70 | DOI | MR

[15] Eisenhart L. P., Riemannian geometry, Princeton Landmarks in Mathematics, 8th ed., Princeton University Press, Princeton, NJ, 1997 | MR

[16] Haantjes J., “On $X_m$-forming sets of eigenvectors”, Indag. Math., 58 (1955), 158–162 | DOI | MR | Zbl

[17] Havas P., “Separation of variables in the Hamilton–Jacobi, Schrödinger, and related equations. II Partial separation”, J. Math. Phys., 16 (1975), 2476–2489 | DOI | MR | Zbl

[18] Kalnins E. G., Separation of variables for {R}iemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific Technical, Harlow; John Wiley Sons, Inc., New York, 1986 | MR | Zbl

[19] Kalnins E. G., Kress J. M., Miller Jr. W., Separation of variables and superintegrability: the symmetry of solvable systems, IOP Publishing, Bristol, 2018

[20] Lehmann-Filhés H. R., “Über die Verwendung unvollständiger Integrale der Hamilton–Jacobischer partiellen Differentialgleichung”, Astron. Nachr., 165 (1904), 209–216 | DOI

[21] Levi-Civita T., “Sulla integrazione della equazione di Hamilton–Jacobi per separazione di variabili”, Math. Ann., 59 (1904), 383–397 | DOI | MR | Zbl

[22] Marcus R. A., “Separation of sets of variables in quantum mechanics”, J. Chem. Phys., 41 (1964), 603–609 | DOI | MR

[23] Meumertzheim M., Reckziegel H., Schaaf M., “Decomposition of twisted and warped product nets”, Results Math., 36 (1999), 297–312 | DOI | MR | Zbl

[24] Moon P., Spencer D. E., Field theory handbook. Including coordinate systems, differential equations and their solutions, 2nd ed., Springer-Verlag, Berlin, 1988 | DOI | MR

[25] Ni A.V., Pak C. W., “Finding analytic solutions on active arcs of the optimal trajectory in a gravitational field and their applications”, Autom. Remote Control, 78 (2017), 313–331 | DOI | MR

[26] Nijenhuis A., “$X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 54 (1951), 200–212 | DOI | MR | Zbl

[27] Schouten J. A., “Über {D}ifferentialkomitanten zweier kontravarianter Grössen”, Proc. K. Ned. Acad. Amsterdam, 43 (1940), 449–452 | MR

[28] Stäckel P., “Sur une classe de problèmes de dynamique”, C. R. Acad. Sci. Paris, 116 (1893), 485–487

[29] Stäckel P., “Ueber quadratische Integrale der Differentialgleichungen der Dynamik”, Ann. Mat. Pura Appl., 25 (1897), 55–60 | DOI | Zbl

[30] Tonolo A., “Sulle varietà Riemanniane normali a tre dimensioni”, Pont. Acad. Sci. Acta, 13 (1949), 29–53 | MR

[31] Wojciechowski S., “Superintegrability of the Calogero–Moser system”, Phys. Lett. A, 95 (1983), 279–281 | DOI | MR