@article{SIGMA_2019_15_a12,
author = {Claudia Maria Chanu and Giovanni Rastelli},
title = {Block-Separation of {Variables:} a {Form} of {Partial} {Separation} for {Natural} {Hamiltonians}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a12/}
}
TY - JOUR AU - Claudia Maria Chanu AU - Giovanni Rastelli TI - Block-Separation of Variables: a Form of Partial Separation for Natural Hamiltonians JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a12/ LA - en ID - SIGMA_2019_15_a12 ER -
%0 Journal Article %A Claudia Maria Chanu %A Giovanni Rastelli %T Block-Separation of Variables: a Form of Partial Separation for Natural Hamiltonians %J Symmetry, integrability and geometry: methods and applications %D 2019 %V 15 %U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a12/ %G en %F SIGMA_2019_15_a12
Claudia Maria Chanu; Giovanni Rastelli. Block-Separation of Variables: a Form of Partial Separation for Natural Hamiltonians. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a12/
[1] Benenti S., “Intrinsic characterization of the variable separation in the Hamilton–Jacobi equation”, J. Math. Phys., 38 (1997), 6578–6602 | DOI | MR | Zbl
[2] Benenti S., Chanu C., Rastelli G., “The super-separability of the three-body inverse-square Calogero system”, J. Math. Phys., 41 (2000), 4654–4678 | DOI | MR | Zbl
[3] Bolsinov A. V., Fomenko A. T., Integrable Hamiltonian systems. Geometry, topology, classification, Boca Raton, FL, 2004 | DOI | MR
[4] Boyer C. P., Kalnins E. G., Miller Jr. W., “Separable coordinates for four-dimensional Riemannian spaces”, Comm. Math. Phys., 59 (1978), 285–302 | DOI | MR | Zbl
[5] Broadbridge P., Chanu C. M., Miller Jr. W., “Solutions of Helmholtz and Schrödinger equations with side condition and nonregular separation of variables”, SIGMA, 8 (2012), 089, 31 pp., arXiv: 1209.2019 | DOI | MR | Zbl
[6] Chanu C., “Geometry of non-regular separation”, Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 305–317 | DOI | MR | Zbl
[7] Chanu C., Degiovanni L., Rastelli G., “Three and four-body systems in one dimension: integrability, superintegrability and discrete symmetries”, Regul. Chaotic Dyn., 16 (2011), 496–503, arXiv: 1309.0089 | DOI | MR | Zbl
[8] Chanu C., Degiovanni L., Rastelli G., “Generalizations of a method for constructing first integrals of a class of natural Hamiltonians and some remarks about quantization”, J. Phys. Conf. Ser., 343 (2012), 012101, 15 pp., arXiv: 1111.0030 | DOI
[9] Chanu C., Rastelli G., “Eigenvalues of Killing tensors and separable webs on Riemannian and pseudo-Riemannian manifolds”, SIGMA, 3 (2007), 021, 21 pp., arXiv: nlin.SI/0612042 | DOI | MR | Zbl
[10] Cochran C. M., McLenaghan R. G., Smirnov R. G., “Equivalence problem for the orthogonal webs on the 3-sphere”, J. Math. Phys., 52 (2011), 053509, 22 pp., arXiv: 1009.4244 | DOI | MR | Zbl
[11] Degiovanni L., Rastelli G., “Complex variables for separation of the Hamilton–Jacobi equation on real pseudo-Riemannian manifolds”, J. Math. Phys., 48 (2007), 073519, 23 pp., arXiv: nlin.SI/0612051 | DOI | MR | Zbl
[12] Di Pirro G. A., “Sugli integrali primi quadratici delle equazioni della meccanica”, Ann. Mat. Pura Appl., 24 (1896), 315–334 | DOI | Zbl
[13] Eisenhart L. P., “Separable systems of Stäckel”, Ann. of Math., 35 (1934), 284–305 | DOI | MR
[14] Eisenhart L. P., “Stäckel systems in conformal Euclidean space”, Ann. of Math., 36 (1935), 57–70 | DOI | MR
[15] Eisenhart L. P., Riemannian geometry, Princeton Landmarks in Mathematics, 8th ed., Princeton University Press, Princeton, NJ, 1997 | MR
[16] Haantjes J., “On $X_m$-forming sets of eigenvectors”, Indag. Math., 58 (1955), 158–162 | DOI | MR | Zbl
[17] Havas P., “Separation of variables in the Hamilton–Jacobi, Schrödinger, and related equations. II Partial separation”, J. Math. Phys., 16 (1975), 2476–2489 | DOI | MR | Zbl
[18] Kalnins E. G., Separation of variables for {R}iemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific Technical, Harlow; John Wiley Sons, Inc., New York, 1986 | MR | Zbl
[19] Kalnins E. G., Kress J. M., Miller Jr. W., Separation of variables and superintegrability: the symmetry of solvable systems, IOP Publishing, Bristol, 2018
[20] Lehmann-Filhés H. R., “Über die Verwendung unvollständiger Integrale der Hamilton–Jacobischer partiellen Differentialgleichung”, Astron. Nachr., 165 (1904), 209–216 | DOI
[21] Levi-Civita T., “Sulla integrazione della equazione di Hamilton–Jacobi per separazione di variabili”, Math. Ann., 59 (1904), 383–397 | DOI | MR | Zbl
[22] Marcus R. A., “Separation of sets of variables in quantum mechanics”, J. Chem. Phys., 41 (1964), 603–609 | DOI | MR
[23] Meumertzheim M., Reckziegel H., Schaaf M., “Decomposition of twisted and warped product nets”, Results Math., 36 (1999), 297–312 | DOI | MR | Zbl
[24] Moon P., Spencer D. E., Field theory handbook. Including coordinate systems, differential equations and their solutions, 2nd ed., Springer-Verlag, Berlin, 1988 | DOI | MR
[25] Ni A.V., Pak C. W., “Finding analytic solutions on active arcs of the optimal trajectory in a gravitational field and their applications”, Autom. Remote Control, 78 (2017), 313–331 | DOI | MR
[26] Nijenhuis A., “$X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 54 (1951), 200–212 | DOI | MR | Zbl
[27] Schouten J. A., “Über {D}ifferentialkomitanten zweier kontravarianter Grössen”, Proc. K. Ned. Acad. Amsterdam, 43 (1940), 449–452 | MR
[28] Stäckel P., “Sur une classe de problèmes de dynamique”, C. R. Acad. Sci. Paris, 116 (1893), 485–487
[29] Stäckel P., “Ueber quadratische Integrale der Differentialgleichungen der Dynamik”, Ann. Mat. Pura Appl., 25 (1897), 55–60 | DOI | Zbl
[30] Tonolo A., “Sulle varietà Riemanniane normali a tre dimensioni”, Pont. Acad. Sci. Acta, 13 (1949), 29–53 | MR
[31] Wojciechowski S., “Superintegrability of the Calogero–Moser system”, Phys. Lett. A, 95 (1983), 279–281 | DOI | MR