@article{SIGMA_2019_15_a11,
author = {Alexander Leaf},
title = {The {Kashaev} {Equation} and {Related} {Recurrences}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a11/}
}
Alexander Leaf. The Kashaev Equation and Related Recurrences. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a11/
[1] Chelkak D., Smirnov S., “Universality in the 2{D} {I}sing model and conformal invariance of fermionic observables”, Invent. Math., 189 (2012), 515–580, arXiv: 0910.2045 | DOI | MR | Zbl
[2] Felsner S., Geometric graphs and arrangements. Some chapters from combinatorial geometry, Advanced Lectures in Mathematics, Friedr. Vieweg Sohn, Wiesbaden, 2004 | DOI | MR
[3] Fomin S., Pylyavskyy P., Shustin E., Morsifications and mutations, arXiv: 1711.10598
[4] Kashaev R. M., “On discrete three-dimensional equations associated with the local Yang–Baxter relation”, Lett. Math. Phys., 38 (1996), 389–397, arXiv: solv-int/9512005 | DOI | MR | Zbl
[5] Kenyon R., Pemantle R., “Principal minors and rhombus tilings,”, J. Phys. A: Math. Theor., 47 (2014), 474010, 17 pp., arXiv: 1404.1354 | DOI | MR | Zbl
[6] Kenyon R., Pemantle R., “Double-dimers, the Ising model and the hexahedron recurrence”, J. Combin. Theory Ser. A, 137 (2016), 27–63, arXiv: 1308.2998 | DOI | MR | Zbl
[7] Kozlov D., Combinatorial algebraic topology, Algorithms and Computation in Mathematics, 21, Springer, Berlin, 2008 | DOI | MR | Zbl
[8] Leaf A., The Kashaev equation and related recurrences, Ph.D. Thesis, University of Michigan, 2018 | MR
[9] Manin Yu. I., Schechtman V. V., “Arrangements of hyperplanes, higher braid groups and higher Bruhat orders”, Algebraic Number Theory, Adv. Stud. Pure Math., 17, Academic Press, Boston, MA, 1989, 289–308 | DOI | MR
[10] Oeding L., “Set-theoretic defining equations of the variety of principal minors of symmetric matrices”, Algebra Number Theory, 5 (2011), 75–109, arXiv: 0809.4236 | DOI | MR | Zbl
[11] Wilson R. J., Introduction to graph theory, Longman, Harlow, 1996 | MR | Zbl
[12] Ziegler G. M., “Higher Bruhat orders and cyclic hyperplane arrangements”, Topology, 32 (1993), 259–279 | DOI | MR | Zbl