Decomposition of some Witten–Reshetikhin–Turaev Representations into Irreducible Factors
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We decompose into irreducible factors the ${\rm SU}(2)$ Witten–Reshetikhin–Turaev representations of the mapping class group of a genus $2$ surface when the level is $p=4r$ and $p=2r^2$ with $r$ an odd prime and when $p=2r_1r_2$ with $r_1$, $r_2$ two distinct odd primes. Some partial generalizations in higher genus are also presented.
Keywords: Witten–Reshetikhin–Turaev representations; mapping class group; topological quantum field theory.
@article{SIGMA_2019_15_a10,
     author = {Julien Korinman},
     title = {Decomposition of some {Witten{\textendash}Reshetikhin{\textendash}Turaev} {Representations} into {Irreducible} {Factors}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a10/}
}
TY  - JOUR
AU  - Julien Korinman
TI  - Decomposition of some Witten–Reshetikhin–Turaev Representations into Irreducible Factors
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a10/
LA  - en
ID  - SIGMA_2019_15_a10
ER  - 
%0 Journal Article
%A Julien Korinman
%T Decomposition of some Witten–Reshetikhin–Turaev Representations into Irreducible Factors
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a10/
%G en
%F SIGMA_2019_15_a10
Julien Korinman. Decomposition of some Witten–Reshetikhin–Turaev Representations into Irreducible Factors. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a10/

[1] Andersen J. E., Fjelstad J., “Reducibility of quantum representations of mapping class groups”, Lett. Math. Phys., 91 (2010), 215–239, arXiv: 0806.2539 | DOI | MR | Zbl

[2] Blanchet C., Habegger N., Masbaum G., Vogel P., “Topological quantum field theories derived from the Kauffman bracket”, Topology, 34 (1995), 883–927 | DOI | MR | Zbl

[3] Freedman M., Krushkal V., “On the asymptotics of quantum ${\rm SU}(2)$ representations of mapping class groups”, Forum Math., 18 (2006), 293–304, arXiv: math.QA/0409503 | DOI | MR | Zbl

[4] Gilmer P. M., Masbaum G., “Maslov index, lagrangians, mapping class groups and TQFT”, Forum Math., 25 (2013), 1067–1106, arXiv: 0912.4706 | DOI | MR | Zbl

[5] Jones V. F. R., “Index for subfactors”, Invent. Math., 72 (1983), 1–25 | DOI | MR | Zbl

[6] Koberda T., Santharoubane R., “Irreducibility of quantum representations of mapping class groups with boundary”, Quantum Topol., 9 (2018), 633–641, arXiv: 1701.08901 | DOI | MR | Zbl

[7] Korinman J., “Irreducible factors of Weil representations and TQFT”, Math. Rep. (to appear) , arXiv: 1310.0390 | Zbl

[8] Lickorish W. B. R., “Invariants for 3-manifolds from the combinatorics of the Jones polynomial”, Pacific J. Math., 149 (1991), 337–347 | DOI | MR | Zbl

[9] Masbaum G., Roberts J. D., “On central extensions of mapping class groups”, Math. Ann., 302 (1995), 131–150, arXiv: math.QA/9909128 | DOI | MR | Zbl

[10] Masbaum G., Vogel P., “$3$-valent graphs and the Kauffman bracket”, Pacific J. Math., 164 (1994), 361–381 | DOI | MR | Zbl

[11] Reshetikhin N., Turaev V. G., “Invariants of $3$-manifolds via link polynomials and quantum groups”, Invent. Math., 103 (1991), 547–597 | DOI | MR | Zbl

[12] Roberts J., “Irreducibility of some quantum representations of mapping class groups”, J. Knot Theory Ramifications, 10 (2001), 763–767, arXiv: math.QA/9909128 | DOI | MR | Zbl

[13] Wenzl H., “On sequences of projections”, C. R. Math. Rep. Acad. Sci. Canada, 9 (1987), 5–9 | MR | Zbl

[14] Witten E., “Quantum field theory and the Jones polynomial”, Comm. Math. Phys., 121 (1989), 351–399 | DOI | MR | Zbl