@article{SIGMA_2019_15_a10,
author = {Julien Korinman},
title = {Decomposition of some {Witten{\textendash}Reshetikhin{\textendash}Turaev} {Representations} into {Irreducible} {Factors}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2019},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a10/}
}
TY - JOUR AU - Julien Korinman TI - Decomposition of some Witten–Reshetikhin–Turaev Representations into Irreducible Factors JO - Symmetry, integrability and geometry: methods and applications PY - 2019 VL - 15 UR - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a10/ LA - en ID - SIGMA_2019_15_a10 ER -
Julien Korinman. Decomposition of some Witten–Reshetikhin–Turaev Representations into Irreducible Factors. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a10/
[1] Andersen J. E., Fjelstad J., “Reducibility of quantum representations of mapping class groups”, Lett. Math. Phys., 91 (2010), 215–239, arXiv: 0806.2539 | DOI | MR | Zbl
[2] Blanchet C., Habegger N., Masbaum G., Vogel P., “Topological quantum field theories derived from the Kauffman bracket”, Topology, 34 (1995), 883–927 | DOI | MR | Zbl
[3] Freedman M., Krushkal V., “On the asymptotics of quantum ${\rm SU}(2)$ representations of mapping class groups”, Forum Math., 18 (2006), 293–304, arXiv: math.QA/0409503 | DOI | MR | Zbl
[4] Gilmer P. M., Masbaum G., “Maslov index, lagrangians, mapping class groups and TQFT”, Forum Math., 25 (2013), 1067–1106, arXiv: 0912.4706 | DOI | MR | Zbl
[5] Jones V. F. R., “Index for subfactors”, Invent. Math., 72 (1983), 1–25 | DOI | MR | Zbl
[6] Koberda T., Santharoubane R., “Irreducibility of quantum representations of mapping class groups with boundary”, Quantum Topol., 9 (2018), 633–641, arXiv: 1701.08901 | DOI | MR | Zbl
[7] Korinman J., “Irreducible factors of Weil representations and TQFT”, Math. Rep. (to appear) , arXiv: 1310.0390 | Zbl
[8] Lickorish W. B. R., “Invariants for 3-manifolds from the combinatorics of the Jones polynomial”, Pacific J. Math., 149 (1991), 337–347 | DOI | MR | Zbl
[9] Masbaum G., Roberts J. D., “On central extensions of mapping class groups”, Math. Ann., 302 (1995), 131–150, arXiv: math.QA/9909128 | DOI | MR | Zbl
[10] Masbaum G., Vogel P., “$3$-valent graphs and the Kauffman bracket”, Pacific J. Math., 164 (1994), 361–381 | DOI | MR | Zbl
[11] Reshetikhin N., Turaev V. G., “Invariants of $3$-manifolds via link polynomials and quantum groups”, Invent. Math., 103 (1991), 547–597 | DOI | MR | Zbl
[12] Roberts J., “Irreducibility of some quantum representations of mapping class groups”, J. Knot Theory Ramifications, 10 (2001), 763–767, arXiv: math.QA/9909128 | DOI | MR | Zbl
[13] Wenzl H., “On sequences of projections”, C. R. Math. Rep. Acad. Sci. Canada, 9 (1987), 5–9 | MR | Zbl
[14] Witten E., “Quantum field theory and the Jones polynomial”, Comm. Math. Phys., 121 (1989), 351–399 | DOI | MR | Zbl