Coadjoint Orbits of Lie Algebras and Cartan Class
Symmetry, integrability and geometry: methods and applications, Tome 15 (2019) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the coadjoint orbits of a Lie algebra in terms of Cartan class. In fact, the tangent space to a coadjoint orbit $\mathcal{O}(\alpha)$ at the point $\alpha$ corresponds to the characteristic space associated to the left invariant form $\alpha$ and its dimension is the even part of the Cartan class of $\alpha$. We apply this remark to determine Lie algebras such that all the nontrivial orbits (nonreduced to a point) have the same dimension, in particular when this dimension is $2$ or $4$. We determine also the Lie algebras of dimension $2n$ or $2n+1$ having an orbit of dimension $2n$.
Keywords: Lie algebras; coadjoint representation; contact forms; Frobenius Lie algebras; Cartan class.
@article{SIGMA_2019_15_a1,
     author = {Michel Goze and Elisabeth Remm},
     title = {Coadjoint {Orbits} of {Lie} {Algebras} and {Cartan} {Class}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2019},
     volume = {15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a1/}
}
TY  - JOUR
AU  - Michel Goze
AU  - Elisabeth Remm
TI  - Coadjoint Orbits of Lie Algebras and Cartan Class
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2019
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a1/
LA  - en
ID  - SIGMA_2019_15_a1
ER  - 
%0 Journal Article
%A Michel Goze
%A Elisabeth Remm
%T Coadjoint Orbits of Lie Algebras and Cartan Class
%J Symmetry, integrability and geometry: methods and applications
%D 2019
%V 15
%U http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a1/
%G en
%F SIGMA_2019_15_a1
Michel Goze; Elisabeth Remm. Coadjoint Orbits of Lie Algebras and Cartan Class. Symmetry, integrability and geometry: methods and applications, Tome 15 (2019). http://geodesic.mathdoc.fr/item/SIGMA_2019_15_a1/

[1] Adimi H., Makhlouf A., “Index of graded filiform and quasi filiform Lie algebras”, Filomat, 27 (2013), 467–483, arXiv: 1212.1650 | DOI | MR | Zbl

[2] Ancochéa-Bermúdez J. M., Goze M., “Classification des algèbres de Lie nilpotentes complexes de dimension $7$”, Arch. Math. (Basel), 52 (1989), 175–185 | DOI | MR | Zbl

[3] Arnal D., Cahen M., Ludwig J., “Lie groups whose coadjoint orbits are of dimension smaller or equal to two”, Lett. Math. Phys., 33 (1995), 183–186 | DOI | MR | Zbl

[4] Awane A., Goze M., Pfaffian systems, $k$-symplectic systems, Kluwer Academic Publishers, Dordrecht, 2000 | DOI | MR | Zbl

[5] Beltiţă D., Cahen B., “Contractions of Lie algebras with 2-dimensional generic coadjoint orbits”, Linear Algebra Appl., 466 (2015), 41–63, arXiv: 1401.3272 | DOI | MR | Zbl

[6] Beltiţă I., Beltiţă D., “Coadjoint orbits of stepwise square integrable representations”, Proc. Amer. Math. Soc., 144 (2016), 1343–1350, arXiv: 1408.1857 | DOI | MR | Zbl

[7] Beltiţă I., Beltiţă D., On the isomorphism problem for $C^*$-algebras of nilpotent Lie groups, arXiv: 1804.05562

[8] Burde D., “Degenerations of 7-dimensional nilpotent Lie algebras”, Comm. Algebra, 33 (2005), 1259–1277, arXiv: math.RA/0409275 | DOI | MR | Zbl

[9] Cartan E., “Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre”, Ann. Sci. École Norm. Sup. (3), 27 (1910), 109–192 | DOI | MR | Zbl

[10] de Graaf W. A., “Classification of solvable Lie algebras”, Experiment. Math., 14 (2005), 15–25, arXiv: math.RA/0404071 | DOI | MR | Zbl

[11] Diatta A., “Left invariant contact structures on Lie groups”, Differential Geom. Appl., 26 (2008), 544–552, arXiv: math.DG/0403555 | DOI | MR | Zbl

[12] Duflo M., Vergne M., “Une propriété de la représentation coadjointe d'une algèbre de Lie”, C. R Acad. Sci. Paris Sér. A-B, 268, 1969, A583–A585 | MR

[13] Godbillon C., Géométrie différentielle et mécanique analytique, Hermann, Paris, 1969 | MR

[14] Goze M., Algèbres de Lie de dimension finie, , Ramm Algebra Center http://ramm-algebra-center.monsite-orange.fr

[15] Goze M., “Sur la classe des formes et systèmes invariants à gauche sur un groupe de Lie”, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), A499–A502 | MR

[16] Goze M., “Modèles d'algèbres de Lie frobeniusiennes”, C. R. Acad. Sci. Paris Sér. I Math., 293 (1981), 425–427 | MR | Zbl

[17] Goze M., Bouyakoub A., “Sur les algèbres de Lie munies d'une forme symplectique”, Rend. Sem. Fac. Sci. Univ. Cagliari, 57 (1987), 85–97 | MR | Zbl

[18] Goze M., Haraguchi Y., “Sur les $r$-systèmes de contact”, C. R. Acad. Sci. Paris Sér. I Math., 294 (1982), 95–97 | MR | Zbl

[19] Goze M., Remm E., “Contact and Frobeniusian forms on Lie groups”, Differential Geom. Appl., 35 (2014), 74–94 | DOI | MR | Zbl

[20] Goze M., Remm E., “$k$-step nilpotent Lie algebras”, Georgian Math. J., 22 (2015), 219–234, arXiv: 1502.05016 | DOI | MR | Zbl

[21] Hatipoglu C., Injective hulls of simple modules over nilpotent Lie color algebras, arXiv: 1411.1512 | MR

[22] Khuhirun B., Misra K. C., Stitzinger E., “On nilpotent Lie algebras of small breadth”, J. Algebra, 444 (2015), 328–338, arXiv: 1410.2778 | DOI | MR | Zbl

[23] Kirillov A. A., Elements of the theory of representations, Grundlehren der Mathematischen Wissenschaften, 220, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl

[24] Ooms A. I., “On Frobenius Lie algebras”, Comm. Algebra, 8 (1980), 13–52 | DOI | MR | Zbl

[25] Pinczon G., Ushirobira R., “New applications of graded Lie algebras to Lie algebras, generalized Lie algebras, and cohomology”, J. Lie Theory, 17 (2007), 633–667, arXiv: math.RT/0507387 | MR | Zbl

[26] Remm E., “Breadth and characteristic sequence of nilpotent Lie algebras”, Comm. Algebra, 45 (2017), 2956–2966, arXiv: 1605.06583 | DOI | MR | Zbl

[27] Remm E., “On filiform Lie algebras. Geometric and algebraic studies”, Rev. Roumaine Math. Pures Appl., 63 (2018), 179–209, arXiv: 1712.00318 | MR