Morita Equivalent Blocks of Symmetric Groups
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A well-known result of Scopes states that there are only finitely many Morita equivalence classes of $p$-blocks of symmetric groups with a given weight (or defect). In this note we investigate a lower bound on the number of those Morita equivalence classes.
Keywords: Morita equivalence; Scopes classes; symmetric groups.
@article{SIGMA_2018_14_a99,
     author = {Benjamin Sambale},
     title = {Morita {Equivalent} {Blocks} of {Symmetric} {Groups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a99/}
}
TY  - JOUR
AU  - Benjamin Sambale
TI  - Morita Equivalent Blocks of Symmetric Groups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a99/
LA  - en
ID  - SIGMA_2018_14_a99
ER  - 
%0 Journal Article
%A Benjamin Sambale
%T Morita Equivalent Blocks of Symmetric Groups
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a99/
%G en
%F SIGMA_2018_14_a99
Benjamin Sambale. Morita Equivalent Blocks of Symmetric Groups. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a99/

[1] Bosma W., Cannon J., Playoust C., “The Magma algebra system. I. The user language”, J. Symbolic Comput., 24 (1997), 235–265 | DOI | MR | Zbl

[2] Chuang J., Rouquier R., “Derived equivalences for symmetric groups and ${\mathfrak{sl}}_2$-categorification”, Ann. of Math., 167 (2008), 245–298, arXiv: math.RT/0407205 | DOI | MR | Zbl

[3] Fayers M., “Decomposition numbers for weight three blocks of symmetric groups and Iwahori–Hecke algebras”, Trans. Amer. Math. Soc., 360 (2008), 1341–1376 | DOI | MR | Zbl

[4] GAP – Groups, Algorithms, and Programming, Version 4.8.10, , 2018 http://www.gap-system.org

[5] Navarro G., Characters and blocks of finite groups, London Mathematical Society Lecture Note Series, 250, Cambridge University Press, Cambridge, 1998 | DOI | MR | Zbl

[6] Olsson J. B., “McKay numbers and heights of characters”, Math. Scand., 38 (1976), 25–42 | DOI | MR | Zbl

[7] Olsson J. B., Combinatorics and representations of finite groups, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen, 20, Universität Essen, Fachbereich Mathematik, Essen, 1993 | MR | Zbl

[8] Osima M., “On the representations of the generalized symmetric group”, Math J. Okayama Univ., 4 (1954), 39–56 | MR | Zbl

[9] Puig L., “On Joanna Scopes' criterion of equivalence for blocks of symmetric groups”, Algebra Colloq., 1 (1994), 25–55 | MR | Zbl

[10] Richards M. J., “Some decomposition numbers for Hecke algebras of general linear groups”, Math. Proc. Cambridge Philos. Soc., 119 (1996), 383–402 | DOI | MR | Zbl

[11] Schaper K. D., Charakterformeln für Weyl-Moduln und Specht-Moduln in Primcharakteristik, Diplomarbeit, Bonn, 1981

[12] Scopes J., “Cartan matrices and Morita equivalence for blocks of the symmetric groups”, J. Algebra, 142 (1991), 441–455 | DOI | MR | Zbl