Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we start with proving that the Schrödinger equation (SE) with the classical $12-6$ Lennard-Jones (L-J) potential is nonintegrable in the sense of the differential Galois theory (DGT), for any value of energy; i.e., there are no solutions in closed form for such differential equation. We study the $10-6$ potential through DGT and SUSYQM; being it one of the two partner potentials built with a superpotential of the form $w(r)\propto 1/r^5$. We also find that it is integrable in the sense of DGT for zero energy. A first analysis of the applicability and physical consequences of the model is carried out in terms of the so called De Boer principle of corresponding states. A comparison of the second virial coefficient $B(T)$ for both potentials shows a good agreement for low temperatures. As a consequence of these results we propose the $10-6$ potential as an integrable alternative to be applied in further studies instead of the original $12-6$ L-J potential. Finally we study through DGT and SUSYQM the integrability of the SE with a generalized $(2\nu-2)-\nu$ L-J potential. This analysis do not include the study of square integrable wave functions, excited states and energies different than zero for the generalization of L-J potentials.
Keywords: Lennard-Jones potential; differential Galois theory; SUSYQM; De Boer principle of corresponding states.
@article{SIGMA_2018_14_a98,
     author = {Manuel F. Acosta-Hum\'anez and Primitivo B. Acosta-Hum\'anez and Erick Tuir\'an},
     title = {Generalized {Lennard-Jones} {Potentials,} {SUSYQM} and {Differential} {Galois} {Theory}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a98/}
}
TY  - JOUR
AU  - Manuel F. Acosta-Humánez
AU  - Primitivo B. Acosta-Humánez
AU  - Erick Tuirán
TI  - Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a98/
LA  - en
ID  - SIGMA_2018_14_a98
ER  - 
%0 Journal Article
%A Manuel F. Acosta-Humánez
%A Primitivo B. Acosta-Humánez
%A Erick Tuirán
%T Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a98/
%G en
%F SIGMA_2018_14_a98
Manuel F. Acosta-Humánez; Primitivo B. Acosta-Humánez; Erick Tuirán. Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a98/

[1] Acosta-Humánez P. B., Galoisian approach to supersymmetric quantum mechanics, Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, 2009, arXiv: 0906.3532

[2] Acosta-Humánez P. B., “Nonautonomous Hamiltonian systems and Morales–Ramis theory. I. The case $\ddot x=f(x,t)$”, SIAM J. Appl. Dyn. Syst., 8 (2009), 279–297, arXiv: 0808.3028 | DOI | MR | Zbl

[3] Acosta-Humánez P. B., Galoisian approach to supersymmetric quantum mechanics. The integrability analysis of the Schrödinger equation by means of differential Galois theory, VDM Verlag, Dr. Müller, Berlin, 2010

[4] Acosta-Humánez P. B., Alvarez-Ramírez M., Blázquez-Sanz D., Delgado J., “Non-integrability criterium for normal variational equations around an integrable subsystem and an example: the Wilberforce spring-pendulum”, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 965–986, arXiv: 1104.0312 | DOI | MR | Zbl

[5] Acosta-Humánez P. B., Álvarez Ramírez M., Delgado J., “Non-integrability of some few body problems in two degrees of freedom”, Qual. Theory Dyn. Syst., 8 (2009), 209–239, arXiv: 0811.2638 | DOI | MR

[6] Acosta-Humánez P. B., Blázquez-Sanz D., “Hamiltonian system and variational equations with polynomial coefficients”, Dynamic Systems and Applications, v. 5, Dynamic, Atlanta, GA, 2008, 6–10 | MR | Zbl

[7] Acosta-Humánez P. B., Blázquez-Sanz D., “Non-integrability of some Hamiltonians with rational potentials”, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 265–293, arXiv: math-ph/0610010 | DOI | MR | Zbl

[8] Acosta-Humánez P. B., Blazquez-Sanz D., Vargas-Contreras C. A., “On Hamiltonian potentials with quartic polynomial normal variational equations”, Nonlinear Stud., 16 (2009), 299–313, arXiv: 0809.0135 | MR | Zbl

[9] Acosta-Humánez P. B., Kryuchkov S. I., Suazo E., Suslov S. K., “Degenerate parametric amplification of squeezed photons: explicit solutions, statistics, means and variance”, J. Nonlinear Opt. Phys. Mater., 24 (2015), 1550021, 27 pp., arXiv: 1311.2479 | DOI

[10] Acosta-Humánez P. B., Lázaro J. T., Morales-Ruiz J. J., Pantazi C., “On the integrability of polynomial vector fields in the plane by means of Picard–Vessiot theory”, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 1767–1800 | DOI | MR | Zbl

[11] Acosta-Humánez P. B., Morales Ruiz J. J., Weil J. A., “Galoisian approach to integrability of Schrödinger equation”, Rep. Math. Phys., 67 (2011), 305–374, arXiv: 1008.3445 | DOI | MR | Zbl

[12] Acosta-Humánez P. B., Pantazi C., “Darboux integrals for Schrödinger planar vector fields via Darboux transformations”, SIGMA, 8 (2012), 043, 26 pp., arXiv: 1111.0120 | DOI | MR | Zbl

[13] Acosta-Humánez P. B., Suazo E., “Liouvillian propagators, Riccati equation and differential Galois theory”, J. Phys. A: Math. Theor., 46 (2013), 455203, 17 pp., arXiv: 1304.5698 | DOI | MR | Zbl

[14] Acosta-Humánez P. B., Suazo E., “Liouvillian propagators and degenerate parametric amplification with time-dependent pump amplitude and phase”, Analysis, Modelling, Optimization, and Numerical Techniques, Springer Proc. Math. Stat., 121, Springer, Cham, 2015, 295–307 | DOI | MR | Zbl

[15] Braverman A., Etingof P., Gaitsgory D., “Quantum integrable systems and differential Galois theory”, Transform. Groups, 2 (1997), 31–56, arXiv: alg-geom/9607012 | DOI | MR | Zbl

[16] Cohen-Tannoudji C., Diu B., Lalöe F., Quantum mechanics, v. 1, John Wiley Sons, New York, 1977

[17] Cooper F., Khare A., Sukhatme U., “Supersymmetry and quantum mechanics”, Phys. Rep., 251 (1995), 267–385, arXiv: hep-th/9405029 | DOI | MR

[18] De Boer J., “Quantum theory of condensed permanent gases. I The law of corresponding states”, Physica, 14 (1948), 139–148 | DOI

[19] De Boer J., Michels A., “Contribution to the quantum-mechanical theory of the equation of state and the law of corresponding states. Determination of the law of force of helium”, Physica, 5 (1938), 945–957 | DOI | Zbl

[20] Duval A., Loday-Richaud M., “Kovačič's algorithm and its application to some families of special functions”, Appl. Algebra Engrg. Comm. Comput., 3 (1992), 211–246 | DOI | MR | Zbl

[21] Gangopadhyaya A., Mallow J. V., Rasinariu C., Supersymmetric quantum mechanics. An introduction, World Scientific, Singapore, 2011 | DOI | Zbl

[22] Gozzi E., Reuter M., Thacker W. D., “Symmetries of the classical path integral on a generalized phase-space manifold”, Phys. Rev. D, 46 (1992), 757–765 | DOI | MR

[23] Guggenheim E. A., “The principle of corresponding states”, J. Chem. Phys., 13 (1945), 253–261 | DOI

[24] Hansen J.-P., Verlet L., “Phase transition on the Lennard-Jones system”, Phys. Rev., 184 (1969), 151–161 | DOI

[25] Horváth G., Kawazoe K., “Method for the calculation of effective pore size distribution in molecular sieve carbon”, J. Chem. Eng. Japan, 16 (1983), 470–475 | DOI

[26] Hurley A. C., Lennard-Jones J. E., Pople J. A., “The molecular orbital theory of chemical valency. XVI. A theory of paired-electrons in polyatomic molecules”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 220 (1953), 446–455 | DOI | Zbl

[27] Jorgensen W. L., “Transferable intermolecular potential functions for water, alcohols and ethers. Application to liquid water”, J. Amer. Chem. Soc., 103 (1981), 335–340 | DOI

[28] Keller J. B., Zumino B., “Determination of intermolecular potentials from thermodynamic data and the law of corresponding states”, J. Chem. Phys., 30 (1959), 1351–1353 | DOI

[29] Kolchin E. R., Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press, New York–London, 1973 | MR | Zbl

[30] Kovacic J. J., “An algorithm for solving second order linear homogeneous differential equations”, J. Symbolic Comput., 2 (1986), 3–43 | DOI | MR | Zbl

[31] Landau D. P., Binder K., A guide to Monte Carlo simulations in statistical physics, 3rd ed., Cambridge University Press, Cambridge, 2009 | DOI | MR | Zbl

[32] Lennard-Jones J. E., “On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 106 (1924), 441–462 | DOI

[33] Lennard-Jones J. E., “On the determination of molecular fields. II. From the equation of state of a gas”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 106 (1924), 463–477 | DOI

[34] Lennard-Jones J. E., “Cohesion”, Proc. Phys. Soc., 43 (1931), 461–482 | DOI

[35] Lennard-Jones J. E., Devonshire A. F., “Critical phenomena in gases - I”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 163 (1937), 53–70 | DOI

[36] McQuarrie D. A., Statistical mechanics, University Science Books, Sausalito, 2000 | Zbl

[37] Mecke M., Winkelmann J., Fischer J., “Molecular dynamics simulation of the liquid-vapor interface: the Lennard-Jones fluid”, J. Chem. Phys., 107 (1997), 9264–9270 | DOI

[38] Mie G., “Zur kinetischen Theorie der einatomigen Körper”, Ann. Phys., 11 (1903), 657–697 | DOI | Zbl

[39] Miller M. D., Nosanow L. H., Parish L. J., “Zero-temperature properties of matter and the quantum theorem of corresponding states. II The liquid-to-gas phase transition for Fermi and Bose systems”, Phys. Rev. B, 15 (1977), 214–229 | DOI | MR

[40] Morales Ruiz J. J., Differential Galois theory and non-integrability of Hamiltonian systems, Progress in Mathematics, 179, Birkhäuser Verlag, Basel, 1999 | DOI | MR | Zbl

[41] Mulero A., Cuadros F., “Isosteric heat of adsorption for monolayers of Lennard-Jones fluids onto flat surfaces”, Chem. Phys., 205 (1996), 379–388 | DOI

[42] Olivier J. P., “Modeling physical adsorption on porous and nonporous solids using density functional theory”, J. Porous Mater., 2 (1995), 9–17 | DOI

[43] Pade J., “Exact scattering length for a potential of Lennard-Jones type”, Eur. Phys. J. D, 44 (2007), 345–350 | DOI

[44] Pitzer K. S., “Corresponding states for perfect liquids”, J. Chem. Phys., 7 (1939), 583–590 | DOI

[45] Ramis J.-P., Martinet J., “Théorie de Galois différentielle et resommation”, Computer Algebra and Differential Equations, Comput. Math. Appl., Academic Press, London, 1990, 117–214 | MR

[46] Semenov-Tian-Shansky M. A., “Lax operators, Poisson groups, and the differential Galois theory”, Theoret. and Math. Phys., 181 (2014), 1279–1301 | DOI | MR | Zbl

[47] Singer M. F., “Liouvillian solutions of $n$th order homogeneous linear differential equations”, Amer. J. Math., 103 (1981), 661–682 | DOI | MR | Zbl

[48] Storck S., Bretinger H., Maier W. F., “Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis”, Appl. Catalysis A, 174 (1998), 137–146 | DOI

[49] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl

[50] van der Waals J. D., “The law of corresponding states for different substances”, Proc. Kon. Nederl. Akad. Wetenschappen, 15 (1913), 971–981

[51] Witten E., “Dynamical breaking of supersymmetry”, Nuclear Phys. B, 188 (1981), 513–554 | DOI | Zbl