Anti-Yetter–Drinfeld Modules for Quasi-Hopf Algebras
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We apply categorical machinery to the problem of defining anti-Yetter–Drinfeld modules for quasi-Hopf algebras. While a definition of Yetter–Drinfeld modules in this setting, extracted from their categorical interpretation as the center of the monoidal category of modules has been given, none was available for the anti-Yetter–Drinfeld modules that serve as coefficients for a Hopf cyclic type cohomology theory for quasi-Hopf algebras. This is a followup paper to the authors' previous effort that addressed the somewhat different case of anti-Yetter–Drinfeld contramodule coefficients in this and in the Hopf algebroid setting.
Keywords: monoidal category; cyclic homology; Hopf algebras; quasi-Hopf algebras.
@article{SIGMA_2018_14_a97,
     author = {Ivan Kobyzev and Ilya Shapiro},
     title = {Anti-Yetter{\textendash}Drinfeld {Modules} for {Quasi-Hopf} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a97/}
}
TY  - JOUR
AU  - Ivan Kobyzev
AU  - Ilya Shapiro
TI  - Anti-Yetter–Drinfeld Modules for Quasi-Hopf Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a97/
LA  - en
ID  - SIGMA_2018_14_a97
ER  - 
%0 Journal Article
%A Ivan Kobyzev
%A Ilya Shapiro
%T Anti-Yetter–Drinfeld Modules for Quasi-Hopf Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a97/
%G en
%F SIGMA_2018_14_a97
Ivan Kobyzev; Ilya Shapiro. Anti-Yetter–Drinfeld Modules for Quasi-Hopf Algebras. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a97/

[1] Brzeziński T., “Hopf-cyclic homology with contramodule coefficients”, Quantum Groups and Noncommutative Spaces, Aspects Math., E41, Vieweg+Teubner, Wiesbaden, 2011, 1–8, arXiv: 0806.0389 | DOI | MR | Zbl

[2] Bulacu D., Panaite F., Van Oystaeyen F., “Quantum traces and quantum dimensions for quasi-Hopf algebras”, Comm. Algebra, 27 (1999), 6103–6122 | DOI | MR | Zbl

[3] Connes A., Moscovici H., “Hopf algebras, cyclic cohomology and the transverse index theorem”, Comm. Math. Phys., 198 (1998), 199–246, arXiv: math.DG/9806109 | DOI | MR | Zbl

[4] Connes A., Moscovici H., “Cyclic cohomology and Hopf algebras”, Lett. Math. Phys., 48 (1999), 97–108, arXiv: math.QA/9904154 | DOI | MR | Zbl

[5] Drinfeld V. G., “Quasi-Hopf algebras”, Leningrad Math. J., 1 (1990), 1419–1457 | MR | Zbl

[6] Etingof P., Nikshych D., Ostrik V., “Fusion categories and homotopy theory”, Quantum Topol., 1 (2010), 209–273, arXiv: 0909.3140 | DOI | MR | Zbl

[7] Hajac P. M., Khalkhali M., Rangipour B., Sommerhäuser Y., “Hopf-cyclic homology and cohomology with coefficients”, C. R. Math. Acad. Sci. Paris, 338 (2004), 667–672, arXiv: math.KT/0306288 | DOI | MR | Zbl

[8] Hajac P. M., Khalkhali M., Rangipour B., Sommerhäuser Y., “Stable anti-Yetter–Drinfeld modules”, C. R. Math. Acad. Sci. Paris, 338 (2004), 587–590, arXiv: math.QA/0405005 | DOI | MR | Zbl

[9] Hassanzadeh M., Khalkhali M., Shapiro I., “Monoidal categories, 2-traces, and cyclic cohomology”, Canad. Math. Bull. (to appear) , arXiv: 1602.05441 | DOI

[10] Jara P., Ştefan D., “Hopf-cyclic homology and relative cyclic homology of Hopf–Galois extensions”, Proc. London Math. Soc., 93 (2006), 138–174, arXiv: math.KT/0307099 | DOI | MR | Zbl

[11] Kobyzev I., Shapiro I., “A categorical approach to cyclic cohomology of quasi-Hopf algebras and Hopf algebroids”, arXiv: 1803.09194

[12] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[13] Majid S., “Quantum double for quasi-Hopf algebras”, Lett. Math. Phys., 45 (1998), 1–9, arXiv: q-alg/9701002 | DOI | MR | Zbl

[14] Panaite F., Van Oystaeyen F., “A structure theorem for quasi-Hopf comodule algebras”, Proc. Amer. Math. Soc., 135 (2007), 1669–1677, arXiv: math.QA/0506272 | DOI | MR | Zbl

[15] Sakáloš \v{S.}, “On categories associated to a quasi-Hopf algebra”, Comm. Algebra, 45 (2017), 722–748, arXiv: 1402.1393 | DOI | MR | Zbl

[16] Shapiro I., Some invariance properties of cyclic cohomology with coefficients, arXiv: 1611.01425