A Note on the Formal Groups of Weighted Delsarte Threefolds
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One-dimensional formal groups over an algebraically closed field of positive characteristic are classified by their height. In the case of $K3$ surfaces, the height of their formal groups takes integer values between $1$ and $10$, or $\infty$. For Calabi–Yau threefolds, the height is bounded by $h^{1,2}+1$ if it is finite, where $h^{1,2}$ is a Hodge number. At present, there are only a limited number of concrete examples for explicit values or the distribution of the height. In this paper, we consider Calabi–Yau threefolds arising from weighted Delsarte threefolds in positive characteristic. We describe an algorithm for computing the height of their formal groups and carry out calculations with various Calabi–Yau threefolds of Delsarte type.
Keywords: Artin–Mazur formal groups; Calabi–Yau threefolds; weighted Delsarte varieties.
@article{SIGMA_2018_14_a96,
     author = {Yasuhiro Goto},
     title = {A {Note} on the {Formal} {Groups} of {Weighted} {Delsarte} {Threefolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a96/}
}
TY  - JOUR
AU  - Yasuhiro Goto
TI  - A Note on the Formal Groups of Weighted Delsarte Threefolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a96/
LA  - en
ID  - SIGMA_2018_14_a96
ER  - 
%0 Journal Article
%A Yasuhiro Goto
%T A Note on the Formal Groups of Weighted Delsarte Threefolds
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a96/
%G en
%F SIGMA_2018_14_a96
Yasuhiro Goto. A Note on the Formal Groups of Weighted Delsarte Threefolds. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a96/

[1] Artin M., “Supersingular $K3$ surfaces”, Ann. Sci. École Norm. Sup. (4), 7 (1974), 543–567 | DOI | MR | Zbl

[2] Artin M., Mazur B., “Formal groups arising from algebraic varieties”, Ann. Sci. École Norm. Sup. (4), 10 (1977), 87–131 | DOI | MR

[3] Delsarte J., “Nombre de solutions des équations polynomiales sur un corps fini”, Séminaire Bourbaki, 1, no. 39, Soc. Math. France, Paris, 1995, 321–329 | MR

[4] Dimca A., “Singularities and coverings of weighted complete intersections”, J. Reine Angew. Math., 366 (1986), 184–193 | DOI | MR | Zbl

[5] Dolgachev I., “Weighted projective varieties”, Group Actions and Vector Fields (Vancouver, B.C., 1981), Lecture Notes in Math., 956, Springer, Berlin, 1982, 34–71 | DOI | MR

[6] Goto Y., “Arithmetic of weighted diagonal surfaces over finite fields”, J. Number Theory, 59 (1996), 37–81 | DOI | MR | Zbl

[7] Goto Y., “The {A}rtin invariant of supersingular weighted Delsarte $K3$ surfaces”, J. Math. Kyoto Univ., 36 (1996), 359–363 | DOI | MR | Zbl

[8] Goto Y., “A note on the height of the formal Brauer group of a $K3$ surface”, Canad. Math. Bull., 47 (2004), 22–29 | DOI | MR | Zbl

[9] Goto Y., Kloosterman R., Yui N., “Zeta-functions of certain $K3$-fibered Calabi–Yau threefolds”, Internat. J. Math., 22 (2011), 67–129, arXiv: 0911.0783 | DOI | MR | Zbl

[10] Greene B. R., Roan S.-S., Yau S.-T., “Geometric singularities and spectra of Landau–Ginzburg models”, Comm. Math. Phys., 142 (1991), 245–259 | DOI | MR

[11] Katz N. M., “On the intersection matrix of a hypersurface”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 583–598 | DOI | MR | Zbl

[12] Kreuzer M., Skarke H., “On the classification of quasihomogeneous functions”, Comm. Math. Phys., 150 (1992), 137–147, arXiv: hep-th/9202039 | DOI | MR | Zbl

[13] Shioda T., “The Hodge conjecture for Fermat varieties”, Math. Ann., 245 (1979), 175–184 | DOI | MR | Zbl

[14] Shioda T., “An explicit algorithm for computing the Picard number of certain algebraic surfaces”, Amer. J. Math., 108 (1986), 415–432 | DOI | MR | Zbl

[15] Shioda T., Katsura T., “On Fermat varieties”, Tôhoku Math. J., 31 (1979), 97–115 | DOI | MR | Zbl

[16] Stienstra J., “Formal group laws arising from algebraic varieties”, Amer. J. Math., 109 (1987), 907–925 | DOI | MR | Zbl

[17] Suwa N., Yui N., “Arithmetic of certain algebraic surfaces over finite fields”, Number Theory (New York, 1985/1988), Lecture Notes in Math., 1383, Springer, Berlin, 1989, 186–256 | DOI | MR

[18] van der Geer G., Katsura T., “On the height of Calabi–Yau varieties in positive characteristic”, Doc. Math., 8 (2003), 97–113, arXiv: math.AG/0302023 | MR | Zbl

[19] Yui N., “Formal Brauer groups arising from certain weighted $K3$ surfaces”, J. Pure Appl. Algebra, 142 (1999), 271–296 | DOI | MR | Zbl

[20] Yui N., “The arithmetic of certain Calabi–Yau varieties over number fields”, The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000, 515–560 | DOI | MR | Zbl