@article{SIGMA_2018_14_a96,
author = {Yasuhiro Goto},
title = {A {Note} on the {Formal} {Groups} of {Weighted} {Delsarte} {Threefolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a96/}
}
Yasuhiro Goto. A Note on the Formal Groups of Weighted Delsarte Threefolds. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a96/
[1] Artin M., “Supersingular $K3$ surfaces”, Ann. Sci. École Norm. Sup. (4), 7 (1974), 543–567 | DOI | MR | Zbl
[2] Artin M., Mazur B., “Formal groups arising from algebraic varieties”, Ann. Sci. École Norm. Sup. (4), 10 (1977), 87–131 | DOI | MR
[3] Delsarte J., “Nombre de solutions des équations polynomiales sur un corps fini”, Séminaire Bourbaki, 1, no. 39, Soc. Math. France, Paris, 1995, 321–329 | MR
[4] Dimca A., “Singularities and coverings of weighted complete intersections”, J. Reine Angew. Math., 366 (1986), 184–193 | DOI | MR | Zbl
[5] Dolgachev I., “Weighted projective varieties”, Group Actions and Vector Fields (Vancouver, B.C., 1981), Lecture Notes in Math., 956, Springer, Berlin, 1982, 34–71 | DOI | MR
[6] Goto Y., “Arithmetic of weighted diagonal surfaces over finite fields”, J. Number Theory, 59 (1996), 37–81 | DOI | MR | Zbl
[7] Goto Y., “The {A}rtin invariant of supersingular weighted Delsarte $K3$ surfaces”, J. Math. Kyoto Univ., 36 (1996), 359–363 | DOI | MR | Zbl
[8] Goto Y., “A note on the height of the formal Brauer group of a $K3$ surface”, Canad. Math. Bull., 47 (2004), 22–29 | DOI | MR | Zbl
[9] Goto Y., Kloosterman R., Yui N., “Zeta-functions of certain $K3$-fibered Calabi–Yau threefolds”, Internat. J. Math., 22 (2011), 67–129, arXiv: 0911.0783 | DOI | MR | Zbl
[10] Greene B. R., Roan S.-S., Yau S.-T., “Geometric singularities and spectra of Landau–Ginzburg models”, Comm. Math. Phys., 142 (1991), 245–259 | DOI | MR
[11] Katz N. M., “On the intersection matrix of a hypersurface”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 583–598 | DOI | MR | Zbl
[12] Kreuzer M., Skarke H., “On the classification of quasihomogeneous functions”, Comm. Math. Phys., 150 (1992), 137–147, arXiv: hep-th/9202039 | DOI | MR | Zbl
[13] Shioda T., “The Hodge conjecture for Fermat varieties”, Math. Ann., 245 (1979), 175–184 | DOI | MR | Zbl
[14] Shioda T., “An explicit algorithm for computing the Picard number of certain algebraic surfaces”, Amer. J. Math., 108 (1986), 415–432 | DOI | MR | Zbl
[15] Shioda T., Katsura T., “On Fermat varieties”, Tôhoku Math. J., 31 (1979), 97–115 | DOI | MR | Zbl
[16] Stienstra J., “Formal group laws arising from algebraic varieties”, Amer. J. Math., 109 (1987), 907–925 | DOI | MR | Zbl
[17] Suwa N., Yui N., “Arithmetic of certain algebraic surfaces over finite fields”, Number Theory (New York, 1985/1988), Lecture Notes in Math., 1383, Springer, Berlin, 1989, 186–256 | DOI | MR
[18] van der Geer G., Katsura T., “On the height of Calabi–Yau varieties in positive characteristic”, Doc. Math., 8 (2003), 97–113, arXiv: math.AG/0302023 | MR | Zbl
[19] Yui N., “Formal Brauer groups arising from certain weighted $K3$ surfaces”, J. Pure Appl. Algebra, 142 (1999), 271–296 | DOI | MR | Zbl
[20] Yui N., “The arithmetic of certain Calabi–Yau varieties over number fields”, The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000, 515–560 | DOI | MR | Zbl