The Variational Bi-Complex for Systems of Semi-Linear Hyperbolic PDEs in Three Variables
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper extends, to a class of systems of semi-linear hyperbolic second order PDEs in three variables, the geometric study of a single nonlinear hyperbolic PDE in the plane as presented in [Anderson I.M., Kamran N., Duke Math. J. 87 (1997), 265–319]. The constrained variational bi-complex is introduced and used to define form-valued conservation laws. A method for generating conservation laws from solutions to the adjoint of the linearized system associated to a system of PDEs is given. Finally, Darboux integrability for a system of three equations is discussed and a method for generating infinitely many conservation laws for such systems is described.
Keywords: Laplace transform; conservation laws; Darboux integrable; variational bi-complex; hyperbolic second-order equations.
@article{SIGMA_2018_14_a95,
     author = {Sara Froehlich},
     title = {The {Variational} {Bi-Complex} for {Systems} of {Semi-Linear} {Hyperbolic} {PDEs} in {Three} {Variables}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a95/}
}
TY  - JOUR
AU  - Sara Froehlich
TI  - The Variational Bi-Complex for Systems of Semi-Linear Hyperbolic PDEs in Three Variables
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a95/
LA  - en
ID  - SIGMA_2018_14_a95
ER  - 
%0 Journal Article
%A Sara Froehlich
%T The Variational Bi-Complex for Systems of Semi-Linear Hyperbolic PDEs in Three Variables
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a95/
%G en
%F SIGMA_2018_14_a95
Sara Froehlich. The Variational Bi-Complex for Systems of Semi-Linear Hyperbolic PDEs in Three Variables. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a95/

[1] Anderson I. M., The variational bicomplex, University of Utah, 1989

[2] Anderson I. M., “Introduction to the variational bicomplex”, Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), Contemp. Math., 132, Amer. Math. Soc., Providence, RI, 1992, 51–73 | DOI | MR

[3] Anderson I. M., Fels M. E., Vassiliou P. J., “Superposition formulas for exterior differential systems”, Adv. Math., 221 (2009), 1910–1963, arXiv: 0708.0679 | DOI | MR | Zbl

[4] Anderson I. M., Kamran N., “The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane”, Duke Math. J., 87 (1997), 265–319 | DOI | MR | Zbl

[5] Anderson I. M., Thompson G., The inverse problem of the calculus of variations for ordinary differential equations, Mem. Amer. Math. Soc., 98, 1992, vi+110 pp. | DOI | MR | Zbl

[6] Bryant R. L., Griffiths P. A., “Characteristic cohomology of differential systems. I General theory”, J. Amer. Math. Soc., 8 (1995), 507–596 | DOI | MR | Zbl

[7] Bryant R. L., Griffiths P. A., “Characteristic cohomology of differential systems. II Conservation laws for a class of parabolic equations”, Duke Math. J., 78 (1995), 531–676 | DOI | MR | Zbl

[8] Bryant R. L., Griffiths P. A., Hsu L., “Hyperbolic exterior differential systems and their conservation laws. I”, Selecta Math. (N.S.), 1 (1995), 21–112 | DOI | MR | Zbl

[9] Bryant R. L., Griffiths P. A., Hsu L., “Hyperbolic exterior differential systems and their conservation laws. II”, Selecta Math. (N.S.), 1 (1995), 265–323 | DOI | MR | Zbl

[10] Cartan E., “Sur les systèmes en involution d'équations aux dérivées partielles du second ordre à une fonction inconnue de trois variables indépendantes”, Bull. Soc. Math. France, 39 (1911), 352–443 | DOI | MR

[11] Cartan E., “Sur l'intégration de certains systèmes indéterminés d'équations différentielles”, J. Reine Angew. Math., 145 (1915), 86–91 | DOI | MR | Zbl

[12] Chern S.-S., “Laplace transforms of a class of higher dimensional varieties in a projective space of $n$ dimensions”, Proc. Nat. Acad. Sci. USA, 30 (1944), 95–97 | DOI | MR | Zbl

[13] Chern S.-S., “Sur une classe remarquable de variétés dans l'espace projectif à $n$ dimensions”, Sci. Rep. Nat. Tsing Hua Univ., 4 (1947), 328–336 | MR

[14] Clelland J. N., “Geometry of conservation laws for a class of parabolic PDE's. II Normal forms for equations with conservation laws”, Selecta Math. (N.S.), 3 (1997), 497–515 | DOI | MR | Zbl

[15] Dedecker P., Tulczyjew W. M., “Spectral sequences and the inverse problem of the calculus of variations”, Differential Geometrical Methods in Mathematical Physics, Proc. Conf. (Aix-en-Provence/Salamanca, 1979), Lecture Notes in Math., 836, Springer, Berlin, 1980, 498–503 | DOI | MR

[16] Dubrovin B. A., Novikov S. P., “Poisson brackets of hydrodynamic type”, Dokl. Akad. Nauk SSSR, 279 (1984), 294–297 | MR | Zbl

[17] Duzhin S. V., Tsujishita T., “Conservation laws of the BBM equation”, J. Phys. A: Math. Gen., 17 (1984), 3267–3276 | DOI | MR | Zbl

[18] Froehlich S., The variational bi-complex for systems of quasi-linear hyperbolic PDE in three variables, Ph.D. Thesis, McGill University, Montreal, 2016

[19] Goursat E., Leçon sur l'intégration des équations aux dérivées partielles du second ordre á deux variables indépendantes, v. I, II, Hermann, Paris, 1896

[20] Juráš M., Anderson I. M., “Generalized Laplace invariants and the method of Darboux”, Duke Math. J., 89 (1997), 351–375 | DOI | MR | Zbl

[21] Kamran N., Selected topics in the geometrical study of differential equations, CBMS Regional Conference Series in Mathematics, 96, Amer. Math. Soc., Providence, RI, 2002 | DOI | MR | Zbl

[22] Kamran N., Tenenblat K., “Laplace transformation in higher dimensions”, Duke Math. J., 84 (1996), 237–266 | DOI | MR | Zbl

[23] Kamran N., Tenenblat K., “Hydrodynamic systems and the higher-dimensional Laplace transformations of Cartan submanifolds”, Algebraic Methods in Physics (Montréal, QC, 1997), CRM Ser. Math. Phys., Springer, New York, 2001, 105–120 | DOI | MR | Zbl

[24] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 2000 | MR | Zbl

[25] Stormark O., Lie's structural approach to PDE systems, Encyclopedia of Mathematics and its Applications, 80, Cambridge University Press, Cambridge, 2000 | DOI | MR | Zbl

[26] Tsarev S. P., “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Math. USSR-Izv., 37 (1991), 397–419 | DOI | MR

[27] Tsujishita T., “Conservation laws of free Klein Gordon fields”, Lett. Math. Phys., 3 (1979), 445–450 | DOI | MR | Zbl

[28] Tsujishita T., “On variation bicomplexes associated to differential equations”, Osaka J. Math., 19 (1982), 311–363 | MR | Zbl

[29] Tsujishita T., “Homological method of computing invariants of systems of differential equations”, Differential Geom. Appl., 1 (1991), 3–34 | DOI | MR | Zbl

[30] Tulczyjew W. M., “The Lagrange complex”, Bull. Soc. Math. France, 105 (1977), 419–431 | DOI | MR | Zbl

[31] Vassiliou P. J., “Method for solving the multidimensional $n$-wave resonant equations and geometry of generalized Darboux–Manakov–Zakharov systems”, Stud. Appl. Math., 126 (2011), 203–243 | DOI | MR | Zbl

[32] Vinogradov A. M., “The ${\mathcal C}$-spectral sequence, Lagrangian formalism, and conservation laws. I The linear theory”, J. Math. Anal. Appl., 100 (1984), 1–40 | DOI | MR | Zbl

[33] Vinogradov A. M., “The ${\mathcal C}$-spectral sequence, Lagrangian formalism, and conservation laws. II The nonlinear theory”, J. Math. Anal. Appl., 100 (1984), 41–129 | DOI | MR | Zbl

[34] Wang S. H., “Conservation laws for a class of third order evolutionary differential systems”, Trans. Amer. Math. Soc., 356 (2004), 4055–4073, arXiv: math.DG/9909086 | DOI | MR | Zbl

[35] Zhiber A. V., Startsev S. Ya., “Integrals, solutions, and the existence of Laplace transforms of a linear hyperbolic system of equations”, Math. Notes, 74 (2003), 803–811 | DOI | MR | Zbl

[36] Zuckerman G. J., “Action principles and global geometry”, Mathematical Aspects of String Theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore, 1987, 259–284 | DOI | MR