@article{SIGMA_2018_14_a94,
author = {Xiaoyue Xia},
title = {Tronqu\'ee {Solutions} of the {Third} and {Fourth} {Painlev\'e} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a94/}
}
Xiaoyue Xia. Tronquée Solutions of the Third and Fourth Painlevé Equations. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a94/
[1] Boutroux P., “Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre”, Ann. Sci. École Norm., 30 (1913), 255–375 | DOI | MR | Zbl
[2] Clarkson P. A., “Painlevé equations — nonlinear special functions”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1883, Springer, Berlin, 2006, 331–411 | DOI | MR | Zbl
[3] Costin O., “Exponential asymptotics, transseries, and generalized Borel summation for analytic, nonlinear, rank-one systems of ordinary differential equations”, Int. Math. Res. Not., 1995 (1995), 377–417, arXiv: math.CA/0608414 | DOI | MR | Zbl
[4] Costin O., “On Borel summation and Stokes phenomena for rank-$1$ nonlinear systems of ordinary differential equations”, Duke Math. J., 93 (1998), 289–344, arXiv: math.CA/0608408 | DOI | MR | Zbl
[5] Costin O., “Topological construction of transseries and introduction to generalized Borel summability”, Analyzable Functions and Applications, Contemp. Math., 373, Amer. Math. Soc., Providence, RI, 2005, 137–175, arXiv: math.CA/0608309 | DOI | MR | Zbl
[6] Costin O., Costin R. D., “On the formation of singularities of solutions of nonlinear differential systems in antistokes directions”, Invent. Math., 145 (2001), 425–485, arXiv: math.CA/0202234 | DOI | MR | Zbl
[7] Costin O., Costin R. D., “Asymptotic properties of a family of solutions of the Painlevé equation $\rm P_{VI}$”, Int. Math. Res. Not., 2002 (2002), 1167–1182, arXiv: math.CA/0202235 | DOI | MR | Zbl
[8] Costin O., Costin R. D., Huang M., “Tronquée solutions of the Painlevé equation PI”, Constr. Approx., 41 (2015), 467–494, arXiv: 1310.5330 | DOI | MR | Zbl
[9] Costin O., Huang M., Tanveer S., “Proof of the Dubrovin conjecture and analysis of the tritronquée solutions of $\rm P_I$”, Duke Math. J., 163 (2014), 665–704, arXiv: 1209.1009 | DOI | MR | Zbl
[10] Dubrovin B., “Hamiltonian PDEs: deformations, integrability, solutions”, J. Phys. A: Math. Theor., 43 (2010), 434002, 20 pp. | DOI | MR | Zbl
[11] Dubrovin B., Grava T., Klein C., “On universality of critical behavior in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation”, J. Nonlinear Sci., 19 (2009), 57–94, arXiv: 0704.0501 | DOI | MR | Zbl
[12] Dubrovin B., Kapaev A., “On an isomonodromy deformation equation without the Painlevé property”, Russ. J. Math. Phys., 21 (2014), 9–35, arXiv: 1301.7211 | DOI | MR | Zbl
[13] Fasondini M., Fornberg B., Weideman J. A. C., “A computational exploration of the McCoy–Tracy–Wu solutions of the third Painlevé equation”, Phys. D, 363 (2018), 18–43 | DOI | MR | Zbl
[14] Fokas A. S., Its A. R., Kapaev A. A., Novokshenov V. Yu., Painlevé transcendents. The Riemann–Hilbert approach, Mathematical Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR
[15] Grava T., Kapaev A., Klein C., “On the tritronquée solutions of ${\rm P}_{\rm I}^2$”, Constr. Approx., 41 (2015), 425–466, arXiv: 1306.6161 | DOI | MR | Zbl
[16] Huang M., Xu S.-X., Zhang L., “Location of poles for the Hastings–McLeod solution to the second Painlevé equation”, Constr. Approx., 43 (2016), 463–494, arXiv: 1410.3338 | DOI | MR | Zbl
[17] Its A. R., Kapaev A. A., “Quasi-linear Stokes phenomenon for the second Painlevé transcendent”, Nonlinearity, 16 (2003), 363–386, arXiv: nlin.SI/0108010 | DOI | MR | Zbl
[18] Joshi N., Kitaev A. V., “On Boutroux's tritronquée solutions of the first Painlevé equation”, Stud. Appl. Math., 107 (2001), 253–291 | DOI | MR | Zbl
[19] Joshi N., Mazzocco M., “Existence and uniqueness of tri-tronquée solutions of the second Painlevé hierarchy”, Nonlinearity, 16 (2003), 427–439, arXiv: math.CA/0212117 | DOI | MR | Zbl
[20] Kapaev A. A., “Asymptotic behavior of the solutions of the Painlevé equation of the first kind”, Differential Equations, 24 (1988), 1107–1115 | MR | Zbl
[21] Kapaev A. A., Global asymptotics of the fourth Painlevé transcendent, Steklov Math. Inst. and IUPUI Preprint # 96-5, 1996
[22] Kapaev A. A., “Quasi-linear stokes phenomenon for the Painlevé first equation”, J. Phys. A:Math. Gen., 37 (2004), 11149–11167, arXiv: nlin.SI/0404026 | DOI | MR | Zbl
[23] Kapaev A. A., Quasi-linear {S}tokes phenomenon for the Hastings–McLeod solution of the second Painlevé equation, arXiv: nlin.SI/0411009 | MR
[24] Kapaev A. A., Kitaev A. V., “Connection formulae for the first Painlevé transcendent in the complex domain”, Lett. Math. Phys., 27 (1993), 243–252 | DOI | MR | Zbl
[25] Kitaev A. V., Vartanian A. H., “Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I”, Inverse Problems, 20 (2004), 1165–1206, arXiv: math.CA/0312075 | DOI | MR | Zbl
[26] Kitaev A. V., Vartanian A. H., “Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation: II”, Inverse Problems, 26 (2010), 105010, 58 pp., arXiv: 1005.2677 | DOI | MR | Zbl
[27] Lin Y., Dai D., Tibboel P., “Existence and uniqueness of tronquée solutions of the third and fourth Painlevé equations”, Nonlinearity, 27 (2014), 171–186, arXiv: 1306.1317 | DOI | MR | Zbl
[28] Masoero D., “Poles of intégrale tritronquée and anharmonic oscillators. Asymptotic localization from WKB analysis”, Nonlinearity, 23 (2010), 2501–2507, arXiv: 1002.1042 | DOI | MR | Zbl
[29] McCoy B. M., Tracy C. A., Wu T. T., “Painlevé functions of the third kind”, J. Math. Phys., 18 (1977), 1058–1092 | DOI | MR | Zbl
[30] Milne A. E., Clarkson P. A., Bassom A. P., “Bäcklund transformations and solution hierarchies for the third Painlevé equation”, Stud. Appl. Math., 98 (1997), 139–194 | DOI | MR | Zbl
[31] Novokshenov V. Yu., “Distributions of poles to Painlevé transcendents via Padé approximations”, Constr. Approx., 39 (2014), 85–99 | DOI | MR | Zbl