Higher Obstructions of Complex Supermanifolds
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we introduce the notion of a ‘good model’ in order to study the higher obstructions of complex supermanifolds. We identify necessary and sufficient conditions for such models to exist. Illustrations over Riemann surfaces are provided.
Keywords: complex supergeometry; supermanifolds; obstruction theory.
@article{SIGMA_2018_14_a93,
     author = {Kowshik Bettadapura},
     title = {Higher {Obstructions} of {Complex} {Supermanifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a93/}
}
TY  - JOUR
AU  - Kowshik Bettadapura
TI  - Higher Obstructions of Complex Supermanifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a93/
LA  - en
ID  - SIGMA_2018_14_a93
ER  - 
%0 Journal Article
%A Kowshik Bettadapura
%T Higher Obstructions of Complex Supermanifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a93/
%G en
%F SIGMA_2018_14_a93
Kowshik Bettadapura. Higher Obstructions of Complex Supermanifolds. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a93/

[1] Bartocci C., Bruzzo U., Hernández Ruipérez D., The geometry of supermanifolds, Mathematics and its Applications, 71, Kluwer Academic Publishers Group, Dordrecht, 1991 | DOI | MR | Zbl

[2] Berezin F. A., Introduction to superanalysis, Mathematical Physics and Applied Mathematics, 9, D. Reidel Publishing Co., Dordrecht, 1987 | DOI | MR | Zbl

[3] Bettadapura K., “On the problem of splitting deformations of super Riemann surfaces”, Lett. Math. Phys. (to appear) , arXiv: 1610.07541 | DOI

[4] Brylinski J.-L., Loop spaces, characteristic classes and geometric quantization, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008 | DOI | MR | Zbl

[5] Deligne P., Morgan J. W., “Notes on supersymmetry (following Joseph Bernstein)”, Quantum Fields and Strings: a Course for Mathematicians (Princeton, NJ, 1996/1997), v. 1, 2, Amer. Math. Soc., Providence, RI, 1999, 41–97 | MR | Zbl

[6] Donagi R., Witten E., “Super Atiyah classes and obstructions to splitting of supermoduli space”, Pure Appl. Math. Q., 9 (2013), 739–788, arXiv: 1404.6257 | DOI | MR | Zbl

[7] Donagi R., Witten E., “Supermoduli space is not projected”, String-Math 2012, Proc. Sympos. Pure Math., 90, Amer. Math. Soc., Providence, RI, 2015, 19–71, arXiv: 1304.7798 | DOI | MR | Zbl

[8] Green P., “On holomorphic graded manifolds”, Proc. Amer. Math. Soc., 85 (1982), 587–590 | DOI | MR | Zbl

[9] Grothendieck A., A general theory of fibre spaces with structure sheaf, University of Kansas, 1995

[10] Manin Yu. I., Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, 289, Springer-Verlag, Berlin, 1988 | DOI | MR | Zbl

[11] Okonek C., Schneider M., Spindler H., Vector bundles on complex projective spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2011 | DOI | MR | Zbl

[12] Onishchik A. L., “On the classification of complex analytic supermanifolds”, Lobachevskii J. Math., 4 (1999), 47–70 | MR | Zbl

[13] Palamodov V. P., “Invariants of analytic $Z_{2}$-manifolds”, Funct. Anal. Appl., 17 (1983), 68–69 | DOI | MR | Zbl