A Riemann–Hilbert Approach to the Heun Equation
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the close connection between the linear system for the sixth Painlevé equation and the general Heun equation, formulate the Riemann–Hilbert problem for the Heun functions and show how, in the case of reducible monodromy, the Riemann–Hilbert formalism can be used to construct explicit polynomial solutions of the Heun equation.
Mots-clés : Heun polynomials; Riemann–Hilbert problem; Painlevé equations.
@article{SIGMA_2018_14_a92,
     author = {Boris Dubrovin and Andrei Kapaev},
     title = {A {Riemann{\textendash}Hilbert} {Approach} to the {Heun} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a92/}
}
TY  - JOUR
AU  - Boris Dubrovin
AU  - Andrei Kapaev
TI  - A Riemann–Hilbert Approach to the Heun Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a92/
LA  - en
ID  - SIGMA_2018_14_a92
ER  - 
%0 Journal Article
%A Boris Dubrovin
%A Andrei Kapaev
%T A Riemann–Hilbert Approach to the Heun Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a92/
%G en
%F SIGMA_2018_14_a92
Boris Dubrovin; Andrei Kapaev. A Riemann–Hilbert Approach to the Heun Equation. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a92/

[1] Arscott F. M., Darai A., “Curvilinear coordinate systems in which the Helmholtz equation separates”, IMA J. Appl. Math., 27 (1981), 33–70 | DOI | MR | Zbl

[2] Boalch P., “From Klein to Painlevé via Fourier, Laplace and Jimbo”, Proc. London Math. Soc., 90 (2005), 167–208, arXiv: math.AG/0308221 | DOI | MR | Zbl

[3] Dubrovin B., Mazzocco M., “Monodromy of certain {P}ainlevé-{VI} transcendents and reflection groups”, Invent. Math., 141 (2000), 55–147, arXiv: math.AG/9806056 | DOI | MR | Zbl

[4] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, McGraw-Hill, New York, 1953

[5] Fokas A. S., Its A. R., Kapaev A. A., Novokshenov V. Yu., Painlevé transcendents. The Riemann–Hilbert approach, Mathematical Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR

[6] Fokas A. S., Its A. R., Kitaev A. V., “The isomonodromy approach to matrix models in $2$D quantum gravity”, Comm. Math. Phys., 147 (1992), 395–430 | DOI | MR | Zbl

[7] Fuchs R., “Sur quelques équations différentielles linéaires du second ordre”, C. R. Acad. Sci. Paris, 141 (1906), 555–558 | Zbl

[8] Fuchs R., “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen”, Math. Ann., 63 (1907), 301–321 | DOI | MR | Zbl

[9] Garnier R., “Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes”, Ann. Sci. École Norm. Sup., 29 (1912), 1–126 | DOI | MR | Zbl

[10] Garnier R., “Étude de l'intégrale générale de l'équation VI de M. Painlevé dans le voisinage de ses singularités transcendantes”, Ann. Sci. École Norm. Sup., 34 (1917), 239–353 | DOI | MR | Zbl

[11] Gromak V. I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Studies in Mathematics, 28, Walter de Gruyter Co., Berlin, 2002 | DOI | MR

[12] Guzzetti D., “Pole distribution of PVI transcendents close to a critical point”, Phys. D, 241 (2012), 2188–2203, arXiv: 1104.5066 | DOI | MR | Zbl

[13] Guzzetti D., “Tabulation of Painlevé 6 transcendents”, Nonlinearity, 25 (2012), 3235–3276, arXiv: 1108.3401 | DOI | MR | Zbl

[14] Heun K., “Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten”, Math. Ann., 33 (1888), 161–179 | DOI | MR

[15] Hortaçsu M., “Heun functions and their uses in physics”, Proceedings of the 13th Regional Conference on Mathematical Physics (October 27–31, 2010, Antalya, Turkey), eds. U. Camci, I. Semi, World Sci. Publ., Hackensack, NJ, 2013, 23–39, arXiv: 1101.0471 | DOI | MR | Zbl

[16] Iwasaki K., “An area-preserving action of the modular group on cubic surfaces and the Painlevé VI equation”, Comm. Math. Phys., 242 (2003), 185–219 | DOI | MR | Zbl

[17] Jimbo M., “Monodromy problem and the boundary condition for some Painlevé equations”, Publ. Res. Inst. Math. Sci., 18 (1982), 1137–1161 | DOI | MR | Zbl

[18] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau $-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl

[19] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl

[20] Litvinov A., Lukyanov S., Nekrasov N., Zamolodchikov A., “Classical conformal blocks and Painlevé VI”, J. High Energy Phys., 2014:7 (2014), 144, 20 pp., arXiv: 1309.4700 | DOI | MR | Zbl

[21] Maier R. S., “The 192 solutions of the Heun equation”, Math. Comp., 76 (2007), 811–843, arXiv: math.CA/0408317 | DOI | MR | Zbl

[22] Mazzocco M., “Rational solutions of the Painlevé VI equation”, J. Phys. A: Math. Gen., 34 (2001), 2281–2294, arXiv: nlin.SI/0007036 | DOI | MR | Zbl

[23] Ronveaux A. (ed.), Heun's differential equations, Oxford University Press, Oxford–New York–Tokyo, 1995 | Zbl

[24] Schlesinger L., “Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten”, J. Reine Angew. Math., 141 (1912), 96–145 | DOI | MR | Zbl

[25] Schmidt D., Wolf G., “A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations”, SIAM J. Math. Anal., 10 (1979), 823–838 | DOI | MR | Zbl

[26] Slavyanov S. Yu., “Painlevé equations as classical analogues of Heun equations”, J. Phys. A: Math. Gen., 29 (1996), 7329–7335 | DOI | MR | Zbl

[27] Slavyanov S. Yu., Lay W., Special functions: a unified theory based on singularities, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000 | MR | Zbl

[28] Smirnov A. O., “Finite-gap solutions of the Fuchsian equations”, Lett. Math. Phys., 76 (2006), 297–316, arXiv: math.CA/0310465 | DOI | MR | Zbl

[29] Stieltjes T. J., “Sur certains polynômes: qui vérifient une équation différentielle linéaire du second ordre et sur la theorie des fonctions de Lamé”, Acta Math., 6 (1885), 321–326 | DOI | MR

[30] Takemura K., “Integral transformation of Heun's equation and some applications”, J. Math. Soc. Japan, 69 (2017), 849–891, arXiv: 1008.4007 | DOI | MR | Zbl