@article{SIGMA_2018_14_a91,
author = {Antonella Marchesiello and Libor \v{S}nobl},
title = {An {Infinite} {Family} of {Maximally} {Superintegrable} {Systems~in~a~Magnetic} {Field} with {Higher} {Order} {Integrals}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a91/}
}
TY - JOUR AU - Antonella Marchesiello AU - Libor Šnobl TI - An Infinite Family of Maximally Superintegrable Systems in a Magnetic Field with Higher Order Integrals JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a91/ LA - en ID - SIGMA_2018_14_a91 ER -
%0 Journal Article %A Antonella Marchesiello %A Libor Šnobl %T An Infinite Family of Maximally Superintegrable Systems in a Magnetic Field with Higher Order Integrals %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a91/ %G en %F SIGMA_2018_14_a91
Antonella Marchesiello; Libor Šnobl. An Infinite Family of Maximally Superintegrable Systems in a Magnetic Field with Higher Order Integrals. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a91/
[1] Benenti S., Chanu C., Rastelli G., “Variable separation for natural Hamiltonians with scalar and vector potentials on Riemannian manifolds”, J. Math. Phys., 42 (2001), 2065–2091 | DOI | MR | Zbl
[2] Bérubé J., Winternitz P., “Integrable and superintegrable quantum systems in a magnetic field”, J. Math. Phys., 45 (2004), 1959–1973, arXiv: math-ph/0311051 | DOI | MR | Zbl
[3] Dehin D., Hussin V., “A simple connection between the motion in a constant magnetic field and the harmonic oscillator”, Helv. Phys. Acta, 60 (1987), 552–559 | DOI
[4] Dorizzi B., Grammaticos B., Ramani A., Winternitz P., “Integrable Hamiltonian systems with velocity-dependent potentials”, J. Math. Phys., 26 (1985), 3070–3079 | DOI | MR
[5] Escobar-Ruiz M. A., Turbiner A. V., “Two charges on a plane in a magnetic field: special trajectories”, J. Math. Phys., 54 (2013), 022901, 15 pp., arXiv: 1208.2995 | DOI | MR | Zbl
[6] Evans N. W., “Superintegrability in classical mechanics”, Phys. Rev. A, 41 (1990), 5666–5676 | DOI | MR
[7] Evans N. W., “Group theory of the Smorodinsky–Winternitz system”, J. Math. Phys., 32 (1991), 3369–3375 | DOI | MR | Zbl
[8] Evans N. W., Verrier P. E., “Superintegrability of the caged anisotropic oscillator”, J. Math. Phys., 49 (2008), 092902, 10 pp., arXiv: 0808.2146 | DOI | MR | Zbl
[9] Heinzl T., Ilderton A., “Superintegrable relativistic systems in spacetime-dependent background fields”, J. Phys. A: Math. Theor., 50 (2017), 345204, 14 pp. | DOI | MR | Zbl
[10] Jauch J. M., Hill E. L., “On the problem of degeneracy in quantum mechanics”, Phys. Rev., 57 (1940), 641–645 | DOI | MR | Zbl
[11] Labelle S., Mayrand M., Vinet L., “Symmetries and degeneracies of a charged oscillator in the field of a magnetic monopole”, J. Math. Phys., 32 (1991), 1516–1521 | DOI | MR | Zbl
[12] Makarov A. A., Smorodinsky J. A., Valiev K., Winternitz P., “A systematic search for nonrelativistic systems with dynamical symmetries”, Nuovo Cimento A, 52 (1967), 1061–1084 | DOI
[13] Marchesiello A., Šnobl L., “Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables”, J. Phys. A: Math. Theor., 50 (2017), 245202, 24 pp. | DOI | MR | Zbl
[14] Marchesiello A., Šnobl L., Winternitz P., “Three-dimensional superintegrable systems in a static electromagnetic field”, J. Phys. A: Math. Theor., 48 (2015), 395206, 24 pp., arXiv: 1507.04632 | DOI | MR | Zbl
[15] Marchesiello A., Šnobl L., Winternitz P., “Spherical type integrable classical systems in a magnetic field”, J. Phys. A: Math. Theor., 51 (2018), 135205, 24 pp. | DOI | MR | Zbl
[16] McIntosh H. V., Cisneros A., “Degeneracy in the presence of a magnetic monopole”, J. Math. Phys., 11 (1970), 896–916 | DOI | MR
[17] McSween E., Winternitz P., “Integrable and superintegrable Hamiltonian systems in magnetic fields”, J. Math. Phys., 41 (2000), 2957–2967 | DOI | MR | Zbl
[18] Miller Jr. W., Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl
[19] Nakagawa K., Yoshida H., “A list of all integrable two-dimensional homogeneous polynomial potentials with a polynomial integral of order at most four in the momenta”, J. Phys. A: Math. Gen., 34 (2001), 8611–8630, arXiv: nlin.SI/0108051 | DOI | MR | Zbl
[20] Pucacco G., “On integrable Hamiltonians with velocity dependent potentials”, Celestial Mech. Dynam. Astronom., 90 (2004), 111–125 | DOI | MR | Zbl
[21] Pucacco G., Rosquist K., “Integrable Hamiltonian systems with vector potentials”, J. Math. Phys., 46 (2005), 012701, 25 pp., arXiv: nlin.SI/0405065 | DOI | MR | Zbl
[22] Rodríguez M. A., Tempesta P., Winternitz P., “Reduction of superintegrable systems: the anisotropic harmonic oscillator”, Phys. Rev. E, 78 (2008), 046608, 6 pp., arXiv: 0807.1047 | DOI | MR
[23] Shapovalov V. N., Bagrov V. G., Meshkov A. G., “Separation of variables in the stationary Schrödinger equation”, Sov. Phys. J., 15 (1972), 1115–1119 | DOI | MR
[24] Tempesta P., Turbiner A. V., Winternitz P., “Exact solvability of superintegrable systems”, J. Math. Phys., 42 (2001), 4248–4257, arXiv: hep-th/0011209 | DOI | MR | Zbl
[25] Thirring W., Classical mathematical physics. Dynamical systems and field theories, 3rd ed., Springer-Verlag, New York, 1997 | DOI | MR
[26] Turbiner A. V., Escobar-Ruiz M. A., “Two charges on a plane in a magnetic field: hidden algebra, (particular) integrability, polynomial eigenfunctions”, J. Phys. A: Math. Theor., 46 (2013), 295204, 15 pp., arXiv: 1303.2345 | DOI | MR | Zbl
[27] Verrier P. E., Evans N. W., “A new superintegrable Hamiltonian”, J. Math. Phys., 49 (2008), 022902, 8 pp., arXiv: 0712.3677 | DOI | MR | Zbl
[28] Zhalij A., “Quantum integrable systems in three-dimensional magnetic fields: the Cartesian case”, J. Phys. Conf. Ser., 621 (2015), 012019, 8 pp., arXiv: 0812.2682 | DOI