Some Remarks on the Total CR $Q$ and $Q^\prime$-Curvatures
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the total CR $Q$-curvature vanishes for any compact strictly pseudoconvex CR manifold. We also prove the formal self-adjointness of the $P^\prime$-operator and the CR invariance of the total $Q^\prime$-curvature for any pseudo-Einstein manifold without the assumption that it bounds a Stein manifold.
Keywords: CR manifolds; $Q$-curvature; $P^\prime$-operator; $Q^\prime$-curvature.
@article{SIGMA_2018_14_a9,
     author = {Taiji Marugame},
     title = {Some {Remarks} on the {Total} {CR} $Q$ and $Q^\prime${-Curvatures}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a9/}
}
TY  - JOUR
AU  - Taiji Marugame
TI  - Some Remarks on the Total CR $Q$ and $Q^\prime$-Curvatures
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a9/
LA  - en
ID  - SIGMA_2018_14_a9
ER  - 
%0 Journal Article
%A Taiji Marugame
%T Some Remarks on the Total CR $Q$ and $Q^\prime$-Curvatures
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a9/
%G en
%F SIGMA_2018_14_a9
Taiji Marugame. Some Remarks on the Total CR $Q$ and $Q^\prime$-Curvatures. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a9/

[1] Alexakis S., Hirachi K., “Integral Kähler invariants and the Bergman kernel asymptotics for line bundles”, Adv. Math., 308 (2017), 348–403, arXiv: 1501.02463 | DOI | MR

[2] Boutet de Monvel L., “Intégration des équations de Cauchy–Riemann induites formelles”, Séminaire Goulaouic–Lions–Schwartz 1974–1975, Équations aux derivées partielles linéaires et non linéaires, 9, Centre Math., École Polytech., Paris, 1975, 14 pp. | MR

[3] Branson T. P., The functional determinant, Global Analysis Research Center Lecture Notes Series, 4, Seoul National University, Research Institute of Mathematics, Seoul, 1993 | MR

[4] Branson T. P., Fontana L., Morpurgo C., “Moser–Trudinger and Beckner–Onofri's inequalities on the CR sphere”, Ann. of Math., 177 (2013), 1–52, arXiv: 0712.3905 | DOI | MR

[5] Cao J., Chang S. C., “Pseudo-Einstein and $Q$-flat metrics with eigenvalue estimates on CR-hypersurfaces”, Indiana Univ. Math. J., 56 (2007), 2839–2857, arXiv: math.DG/0609312 | DOI | MR

[6] Case J. S., Gover A. R., The $P^\prime$-operator, the $Q^\prime$-curvature, and the CR tractor calculus, arXiv: 1709.08057

[7] Case J. S., Yang P., “A Paneitz-type operator for CR pluriharmonic functions”, Bull. Inst. Math. Acad. Sin. (N.S.), 8 (2013), 285–322, arXiv: 1309.2528 | MR

[8] Fefferman C. L., “Monge–Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains”, Ann. of Math., 103 (1976), 395–416 | DOI | MR

[9] Fefferman C. L., Hirachi K., “Ambient metric construction of $Q$-curvature in conformal and CR geometries”, Math. Res. Lett., 10 (2003), 819–831, arXiv: math.DG/0303184 | DOI | MR

[10] Harvey F. R., Lawson Jr. H.B., “On boundaries of complex analytic varieties. I”, Ann. of Math., 102 (1975), 223–290 | DOI | MR

[11] Harvey F. R., Lawson Jr. H.B., “On boundaries of complex analytic varieties. II”, Ann. of Math., 106 (1977), 213–238 | DOI | MR

[12] Hirachi K., “$Q$-prime curvature on CR manifolds”, Differential Geom. Appl., 33, suppl. (2014), 213–245, arXiv: 1302.0489 | DOI | MR

[13] Hirachi K., Marugame T., Matsumoto Y., “Variation of total $Q$-prime curvature on CR manifolds”, Adv. Math., 306 (2017), 1333–1376, arXiv: 1510.03221 | DOI | MR

[14] Lee J. M., “Pseudo-Einstein structures on CR manifolds”, Amer. J. Math., 110 (1988), 157–178 | DOI | MR

[15] Seshadri N., “Volume renormalization for complete Einstein–Kähler metrics”, Differential Geom. Appl., 25 (2007), 356–379, arXiv: math.DG/0404455 | DOI | MR