Computing Special $L$-Values of Certain Modular Forms with Complex Multiplication
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this expository paper, we illustrate two explicit methods which lead to special $L$-values of certain modular forms admitting complex multiplication (CM), motivated in part by properties of $L$-functions obtained from Calabi–Yau manifolds defined over $\mathbb{Q}$.
Keywords: $L$-values; modular forms; complex multiplications; hypergeometric functions; Eisenstein series.
@article{SIGMA_2018_14_a89,
     author = {Wen-Ching Winnie Li and Ling Long and Fang-Ting Tu},
     title = {Computing {Special} $L${-Values} of {Certain} {Modular} {Forms} with {Complex} {Multiplication}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a89/}
}
TY  - JOUR
AU  - Wen-Ching Winnie Li
AU  - Ling Long
AU  - Fang-Ting Tu
TI  - Computing Special $L$-Values of Certain Modular Forms with Complex Multiplication
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a89/
LA  - en
ID  - SIGMA_2018_14_a89
ER  - 
%0 Journal Article
%A Wen-Ching Winnie Li
%A Ling Long
%A Fang-Ting Tu
%T Computing Special $L$-Values of Certain Modular Forms with Complex Multiplication
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a89/
%G en
%F SIGMA_2018_14_a89
Wen-Ching Winnie Li; Ling Long; Fang-Ting Tu. Computing Special $L$-Values of Certain Modular Forms with Complex Multiplication. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a89/

[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl

[2] Atkin A. O.L., Li W.-C.W., Long L., “On Atkin and Swinnerton–Dyer congruence relations. II”, Math. Ann., 340 (2008), 335–358, arXiv: math.NT/0512614 | DOI | MR | Zbl

[3] Borwein J. M., Borwein P. B., Pi and the AGM A study in analytic number theory and computational complexity, Canadian Mathematical Society Series of Monographs and Advanced Texts, 4, John Wiley Sons, Inc., New York, 1998 | MR

[4] Borwein J. M., Borwein P. B., Garvan F. G., “Some cubic modular identities of Ramanujan”, Trans. Amer. Math. Soc., 343 (1994), 35–47 | DOI | MR | Zbl

[5] Coates J., Wiles A., “Kummer's criterion for Hurwitz numbers”, Algebraic Number Theory, Kyoto Internat. Sympos. (Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976), Japan Soc. Promotion Sci., Tokyo, 1977, 9–23 | MR

[6] Cohen H., Number theory, v. II, Graduate Texts in Mathematics, 240, Analytic and modern tools, Springer, New York, 2007 | DOI | MR | Zbl

[7] Cohen H., Strömberg F., Modular forms. A classical approach, Graduate Studies in Mathematics, 179, Amer. Math. Soc., Providence, RI, 2017 | DOI | MR | Zbl

[8] Damerell R. M., “$L$-functions of elliptic curves with complex multiplication. I”, Acta Arith., 17 (1970), 287–301 | DOI | MR | Zbl

[9] Damerell R. M., “$L$-functions of elliptic curves with complex multiplication. II”, Acta Arith., 19 (1971), 311–317 | DOI | MR | Zbl

[10] Deligne P., “Valeurs de fonctions $L$ et périodes d'intégrales”, Automorphic forms, representations and $L$-functions (Oregon State Univ., Corvallis, Ore., 1977), v. 2, Proc. Sympos. Pure Math., 33, Amer. Math. Soc., Providence, R.I., 1979, 313–346 | DOI | MR

[11] Diamond F., Shurman J., A first course in modular forms, Graduate Texts in Mathematics, 228, Springer-Verlag, New York, 2005 | DOI | MR | Zbl

[12] Gouvêa F. Q., Yui N., “Rigid Calabi–Yau threefolds over $\mathbb Q$ are modular”, Expo. Math., 29 (2011), 142–149, arXiv: 0902.1466 | DOI | MR | Zbl

[13] Gross B. H., “On the periods of abelian integrals and a formula of Chowla and Selberg”, Invent. Math., 45 (1978), 193–211 | DOI | MR | Zbl

[14] Haberland K., “Perioden von Modulformen einer Variabler and Gruppencohomologie. I”, Math. Nachr., 112 (1983), 245–282 | DOI | MR | Zbl

[15] Haberland K., “Perioden von Modulformen einer Variabler and Gruppencohomologie. II”, Math. Nachr., 112 (1983), 283–295 | DOI | MR | Zbl

[16] Haberland K., “Perioden von Modulformen einer Variabler and Gruppencohomologie. III”, Math. Nachr., 112 (1983), 297–315 | DOI | MR | Zbl

[17] Hurwitz A., “Ueber die Entwickelungscoefficienten der lemniscatischen Functionen”, Math. Ann., 51 (1898), 196–226 | DOI | MR

[18] Kazalicki M., Scholl A. J., “Modular forms, de Rham cohomology and congruences”, Trans. Amer. Math. Soc., 368 (2016), 7097–7117, arXiv: 1301.5876 | DOI | MR | Zbl

[19] Knopp M. I., Modular functions in analytic number theory, Markham Publishing Co., Chicago, Ill., 1970 | MR | Zbl

[20] Kohnen W., Zagier D., “Modular forms with rational periods”, Modular Forms (Durham, 1983), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, 197–249 | MR

[21] Lee J.-J., Murty M. R., Park D., “Generalization of a theorem of Hurwitz”, J. Ramanujan Math. Soc., 31 (2016), 215–226 | MR

[22] Li W.-C.W., Number theory with applications, Series on University Mathematics, 7, World Scientific Publishing Co., Inc., River Edge, NJ, 1996 | DOI | MR

[23] Long L., Tu F.-T., Yui N., Zudilin W., Supercongruences for rigid hypergeometric Calabi–Yau threefolds, arXiv: 1705.01663

[24] Manin Yu.I., “Periods of parabolic forms and $p$-adic Hecke series”, Math. USSR Sb., 21 (1973), 371–393 | DOI | MR

[25] Neukirch J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl

[26] Ogg A., Modular forms and Dirichlet series, W.A. Benjamin, Inc., New York–Amsterdam, 1969 | MR | Zbl

[27] Paşol V., Popa A. A., “Modular forms and period polynomials”, Proc. Lond. Math. Soc., 107 (2013), 713–743, arXiv: 1202.5802 | DOI | MR | Zbl

[28] Rogers M., Wan J. G., Zucker I. J., “Moments of elliptic integrals and critical $L$-values”, Ramanujan J., 37 (2015), 113–130, arXiv: 1303.2259 | DOI | MR | Zbl

[29] Schoeneberg B., Elliptic modular functions: an introduction, Die Grundlehren der mathematischen Wissenschaften, 203, Springer-Verlag, New York–Heidelberg, 1974 | DOI | MR | Zbl

[30] Sebbar A., “Modular subgroups, forms, curves and surfaces”, Canad. Math. Bull., 45 (2002), 294–308 | DOI | MR | Zbl

[31] Selberg A., Chowla S., “On Epstein's zeta-function”, J. Reine Angew. Math., 227 (1967), 86–110 | DOI | MR | Zbl

[32] Serre J.-P., “Sur la lacunarité des puissances de $\eta$”, Glasgow Math. J., 27 (1985), 203–221 | DOI | MR | Zbl

[33] Shimura G., “On the periods of modular forms”, Math. Ann., 229 (1977), 211–221 | DOI | MR | Zbl

[34] Shimura G., Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, 11, Princeton University Press, Princeton, NJ, 1994 | MR | Zbl

[35] Shioda T., Inose H., “On singular $K3$ surfaces”, Complex Analysis and Algebraic Geometry, Iwanami Shoten, Tokyo, 1977, 119–136 | DOI | MR

[36] Silverman J. H., Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer-Verlag, New York, 1994 | DOI | MR | Zbl

[37] Stienstra J., Beukers F., “On the Picard–Fuchs equation and the formal Brauer group of certain elliptic $K3$-surfaces”, Math. Ann., 271 (1985), 269–304 | DOI | MR | Zbl

[38] Tate J. T., “Fourier analysis in number fields, and Hecke's zeta-functions”, Algebraic Number Theory, Proc. Instructional Conf. (Brighton, 1965), Thompson, Washington, D.C., 1967, 305–347 | MR

[39] Tu F.-T., Yang Y., “Algebraic transformations of hypergeometric functions and automorphic forms on Shimura curves”, Trans. Amer. Math. Soc., 365 (2013), 6697–6729, arXiv: 1112.1001 | DOI | MR | Zbl

[40] Villegas F. R., Zagier D., “Square roots of central values of Hecke $L$-series”, Advances in Number Theory (Kingston, ON, 1991), Oxford Sci. Publ., Oxford University Press, New York, 1993, 81–99 | MR | Zbl

[41] Weil A., “Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen”, Math. Ann., 168 (1967), 149–156 | DOI | MR | Zbl

[42] Yager R. I., “A Kummer criterion for imaginary quadratic fields”, Compositio Math., 47 (1982), 31–42 | MR | Zbl

[43] Yang Y., “Schwarzian differential equations and Hecke eigenforms on Shimura curves”, Compos. Math., 149 (2013), 1–31, arXiv: 1110.6284 | DOI | MR | Zbl

[44] Yui N., “Modularity of Calabi–Yau varieties: 2011 and beyond”, Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds, Fields Inst. Commun., 67, Springer, New York, 2013, 101–139, arXiv: 1212.4308 | DOI | MR | Zbl

[45] Zagier D., “Elliptic modular forms and their applications”, The 1-2-3 of Modular Forms, Universitext, Springer, Berlin, 2008, 1–103 | DOI | MR | Zbl