@article{SIGMA_2018_14_a88,
author = {David Saunders},
title = {On {Lagrangians} with {Reduced-Order} {Euler{\textendash}Lagrange} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a88/}
}
David Saunders. On Lagrangians with Reduced-Order Euler–Lagrange Equations. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a88/
[1] Anderson I. M., The variational bicomplex, Technical report, Utah State University, 1989
[2] Carmeli M., Classical fields: general relativity and gauge theory, A Wiley-Interscience Publication, John Wiley Sons, Inc., New York, 1982 | MR | Zbl
[3] Krupka D., “Variational sequences on finite order jet spaces”, Differential Geometry and its Applications (Brno, 1989), World Sci. Publ., Teaneck, NJ, 1990, 236–254 | MR | Zbl
[4] Krupková O., “Lepagean $2$-forms in higher order Hamiltonian mechanics. I. Regularity”, Arch. Math. (Brno), 22 (1986), 97–120 | MR | Zbl
[5] Krupková O., The geometry of ordinary variational equations, Lecture Notes in Mathematics, 1678, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
[6] Olver P. J., Differential hyperforms I, University of Minnesota Mathematics Report 82-101, 1982 http://www-users.math.umn.edu/õlver/a_/hyper.pdf | MR
[7] Olver P. J., “Hyper-Jacobians, determinantal ideals and weak solutions to variational problems”, Proc. Roy. Soc. Edinburgh Sect. A, 95 (1983), 317–340 | DOI | MR | Zbl
[8] Palese M., Vitolo R., “On a class of polynomial Lagrangians”, Rend. Circ. Mat. Palermo Suppl., 2001, 147–159, arXiv: math-ph/0111019 | MR | Zbl
[9] Saunders D. J., The geometry of jet bundles, London Mathematical Society Lecture Note Series, 142, Cambridge University Press, Cambridge, 1989 | DOI | MR | Zbl