@article{SIGMA_2018_14_a87,
author = {Galina Filipuk and Walter Van Assche},
title = {Discrete {Orthogonal} {Polynomials} with {Hypergeometric} {Weights} and {Painlev\'e} {VI}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a87/}
}
TY - JOUR AU - Galina Filipuk AU - Walter Van Assche TI - Discrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a87/ LA - en ID - SIGMA_2018_14_a87 ER -
Galina Filipuk; Walter Van Assche. Discrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a87/
[1] Boelen L., Filipuk G., Smet C., Van Assche W., Zhang L., “The generalized Krawtchouk polynomials and the fifth Painlevé equation”, J. Difference Equ. Appl., 19 (2013), 1437–1451, arXiv: 1204.5070 | DOI | MR | Zbl
[2] Boelen L., Filipuk G., Van Assche W., “Recurrence coefficients of generalized Meixner polynomials and Painlevé equations”, J. Phys. A: Math. Theor., 44 (2011), 035202, 19 pp. | DOI | MR | Zbl
[3] Chen Y., Zhang L., “Painlevé VI and the unitary Jacobi ensembles”, Stud. Appl. Math., 125 (2010), 91–112, arXiv: 0911.5636 | DOI | MR | Zbl
[4] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl
[5] Clarkson P. A., “Painlevé equations — nonlinear special functions”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1883, Springer, Berlin, 2006, 331–411 | DOI | MR | Zbl
[6] Clarkson P. A., “Recurrence coefficients for discrete orthonormal polynomials and the Painlevé equations”, J. Phys. A: Math. Theor., 46 (2013), 185205, 18 pp., arXiv: 1301.2396 | DOI | MR | Zbl
[7] Dai D., Zhang L., “Painlevé VI and Hankel determinants for the generalized Jacobi weight”, J. Phys. A: Math. Theor., 43 (2010), 055207, 14 pp., arXiv: 0908.0558 | DOI | MR | Zbl
[8] Dominici D., “Laguerre–Freud equations for generalized Hahn polynomials of type I”, J. Difference Equ. Appl., 24 (2018), 916–940, arXiv: 1801.02267 | DOI | MR | Zbl
[9] Dominici D., Marcellán F., “Discrete semiclassical orthogonal polynomials of class one”, Pacific J. Math., 268 (2014), 389–411, arXiv: 1211.2005 | DOI | MR | Zbl
[10] Filipuk G., Van Assche W., “Recurrence coefficients of a new generalization of the Meixner polynomials”, SIGMA, 7 (2011), 068, 11 pp., arXiv: 1104.3773 | DOI | MR | Zbl
[11] Filipuk G., Van Assche W., “Recurrence coefficients of generalized Charlier polynomials and the fifth Painlevé equation”, Proc. Amer. Math. Soc., 141 (2013), 551–562, arXiv: 1106.2959 | DOI | MR | Zbl
[12] Forrester P. J., Log-gases and random matrices, London Mathematical Society Monographs Series, 34, Princeton University Press, Princeton, NJ, 2010 | DOI | MR | Zbl
[13] Grammaticos B., Ramani A., “Discrete Painlevé equations: a review”, Discrete Integrable Systems, Lecture Notes in Phys., 644, Springer, Berlin, 2004, 245–321 | DOI | MR | Zbl
[14] Hounkonnou M. N., Hounga C., Ronveaux A., “Discrete semi-classical orthogonal polynomials: generalized Charlier”, J. Comput. Appl. Math., 114 (2000), 361–366 | DOI | MR | Zbl
[15] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[16] Ismail M. E. H., Nikolova I., Simeonov P., “Difference equations and discriminants for discrete orthogonal polynomials”, Ramanujan J., 8 (2004), 475–502 | DOI | MR | Zbl
[17] Kajiwara K., Noumi M., Yamada Y., “Geometric aspects of Painlevé equations”, J. Phys. A: Math. Theor., 50 (2017), 073001, 164 pp., arXiv: 1509.08186 | DOI | MR | Zbl
[18] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[19] Lyu S., Chen Y., “Exceptional solutions to the Painlevé VI equation associated with the generalized Jacobi weight”, Random Matrices Theory Appl., 6 (2017), 1750003, 31 pp. | DOI | MR | Zbl
[20] Okamoto K., “Polynomial Hamiltonians associated with Painlevé equations. II Differential equations satisfied by polynomial Hamiltonians”, Proc. Japan Acad. Ser. A Math. Sci., 56 (1980), 367–371 | DOI | MR | Zbl
[21] Ramani A., Grammaticos B., Tamizhmani T., Tamizhmani K. M., “Special function solutions of the discrete Painlevé equations”, Comput. Math. Appl., 42 (2001), 603–614 | DOI | MR | Zbl
[22] Smet C., Van Assche W., “Orthogonal polynomials on a bi-lattice”, Constr. Approx., 36 (2012), 215–242, arXiv: 1101.1817 | DOI | MR | Zbl
[23] Van Assche W., Orthogonal polynomials and Painlevé equations, Australian Mathematical Society Lecture Series, 27, Cambridge University Press, Cambridge, 2018 | DOI | MR
[24] Van Assche W., Foupouagnigni M., “Analysis of non-linear recurrence relations for the recurrence coefficients of generalized Charlier polynomials”, J. Nonlinear Math. Phys., 10:2 (2003), 231–237 | DOI | MR | Zbl