A Hypergeometric Versionof the Modularity of Rigid Calabi–Yau Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We examine instances of modularity of (rigid) Calabi–Yau manifolds whose periods are expressed in terms of hypergeometric functions. The $p$-th coefficients $a(p)$ of the corresponding modular form can be often read off, at least conjecturally, from the truncated partial sums of the underlying hypergeometric series modulo a power of $p$ and from Weil's general bounds $|a(p)|\le2p^{(m-1)/2}$, where $m$ is the weight of the form. Furthermore, the critical $L$-values of the modular form are predicted to be $\mathbb Q$-proportional to the values of a related basis of solutions to the hypergeometric differential equation.
Keywords: hypergeometric equation; bilateral hypergeometric series; modular form; Calabi–Yau manifold.
@article{SIGMA_2018_14_a85,
     author = {Wadim Zudilin},
     title = {A {Hypergeometric} {Versionof} the {Modularity} of {Rigid} {Calabi{\textendash}Yau} {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a85/}
}
TY  - JOUR
AU  - Wadim Zudilin
TI  - A Hypergeometric Versionof the Modularity of Rigid Calabi–Yau Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a85/
LA  - en
ID  - SIGMA_2018_14_a85
ER  - 
%0 Journal Article
%A Wadim Zudilin
%T A Hypergeometric Versionof the Modularity of Rigid Calabi–Yau Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a85/
%G en
%F SIGMA_2018_14_a85
Wadim Zudilin. A Hypergeometric Versionof the Modularity of Rigid Calabi–Yau Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a85/

[1] Ahlgren S., Ono K., “A Gaussian hypergeometric series evaluation and Apéry number congruences”, J. Reine Angew. Math., 518 (2000), 187–212 | DOI | MR | Zbl

[2] Berndt B. C., Ramanujan's notebooks, v. V, Springer-Verlag, New York, 1998 | DOI | MR | Zbl

[3] Beukers F., “Another congruence for the Apéry numbers”, J. Number Theory, 25 (1987), 201–210 | DOI | MR | Zbl

[4] Beukers F., Cohen H., Mellit A., “Finite hypergeometric functions”, Pure Appl. Math. Q., 11 (2015), 559–589, arXiv: 1505.02900 | DOI | MR | Zbl

[5] Cooper S., “Inversion formulas for elliptic functions”, Proc. Lond. Math. Soc., 99 (2009), 461–483 | DOI | MR | Zbl

[6] Damerell R. M., “$L$-functions of elliptic curves with complex multiplication. I”, Acta Arith., 17 (1970), 287–301 | DOI | MR | Zbl

[7] Evans R., Review of [1], Amer. Math. Soc., Providence, RI | MR

[8] Frechette S., Ono K., Papanikolas M., “Gaussian hypergeometric functions and traces of Hecke operators”, Int. Math. Res. Not., 2004 (2004), 3233–3262 | DOI | MR | Zbl

[9] Glaisher J. W. L., “On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares”, Quart. J. Pure Appl. Math., 38 (1906), 1–62 | MR | Zbl

[10] Golyshev V., Mellit A., “Gamma structures and Gauss's contiguity”, J. Geom. Phys., 78 (2014), 12–18, arXiv: 0902.2003 | DOI | MR | Zbl

[11] Greene J., “Hypergeometric functions over finite fields”, Trans. Amer. Math. Soc., 301 (1987), 77–101 | DOI | MR | Zbl

[12] Guillera J., Bilateral sums related to Ramanujan-like series, arXiv: 1610.04839

[13] Guillera J., Rogers M., “Ramanujan series upside-down”, J. Aust. Math. Soc., 97 (2014), 78–106, arXiv: 1206.3981 | DOI | MR | Zbl

[14] Kilbourn T., “An extension of the Apéry number supercongruence”, Acta Arith., 123 (2006), 335–348 | DOI | MR | Zbl

[15] The LMFDB Collaboration, The $L$-functions and modular forms database, http://www.lmfdb.org

[16] Long L., “Hypergeometric evaluation identities and supercongruences”, Pacific J. Math., 249 (2011), 405–418, arXiv: 0912.0197 | DOI | MR | Zbl

[17] Long L., Tu F.-T., Yui N., Zudilin W., Supercongruences for rigid hypergeometric Calabi–Yau threefolds, arXiv: 1705.01663

[18] McCarthy D., “Extending {G}aussian hypergeometric series to the $p$-adic setting”, Int. J. Number Theory, 8 (2012), 1581–1612, arXiv: 1204.1574 | DOI | MR | Zbl

[19] Osburn R., Straub A., Zudilin W., “A modular supercongruence for $_6F_5$: an Apéry-like story”, Ann. Inst. Fourier (Grenoble) (to appear) , arXiv: 1701.04098

[20] Roberts D., Rodriguez Villegas F., Hypergeometric supercongruences, arXiv: 1803.10834

[21] Rodriguez Villegas F., “Hypergeometric families of Calabi–Yau manifolds”, Calabi–Yau Varieties and Mirror Symmetry (Toronto, ON, 2001), Fields Inst. Commun., 38, Amer. Math. Soc., Providence, RI, 2003, 223–231 | MR | Zbl

[22] Rodriguez Villegas F., Hypergeometric motives, Lecture notes, 2017

[23] Rogers M., Wan J. G., Zucker I. J., “Moments of elliptic integrals and critical $L$-values”, Ramanujan J., 37 (2015), 113–130, arXiv: 1303.2259 | DOI | MR | Zbl

[24] Scheidegger E., Analytic continuation of hypergeometric functions in the resonant case, arXiv: 1602.01384

[25] Shimura G., “The special values of the zeta functions associated with cusp forms”, Comm. Pure Appl. Math., 29 (1976), 783–804 | DOI | MR | Zbl

[26] Shimura G., “On the periods of modular forms”, Math. Ann., 229 (1977), 211–221 | DOI | MR | Zbl

[27] Silverman J. H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, 2nd ed., Springer, Dordrecht, 2009 | DOI | MR | Zbl

[28] Slater L. J., Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966 | MR | Zbl

[29] Stienstra J., “Mahler measure variations, Eisenstein series and instanton expansions”, Mirror Symmetry. V, AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI, 2006, 139–150, arXiv: math.NT/0502193 | DOI | MR | Zbl

[30] Stienstra J., Beukers F., “On the Picard–Fuchs equation and the formal Brauer group of certain elliptic $K3$-surfaces”, Math. Ann., 271 (1985), 269–304 | DOI | MR | Zbl

[31] Swisher H., “On the supercongruence conjectures of van Hamme”, Res. Math. Sci., 2 (2015), 18, 21 pp., arXiv: 1504.01028 | DOI | MR | Zbl

[32] van Hamme L., “Some conjectures concerning partial sums of generalized hypergeometric series”, $p$-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math., 192, eds. W. H. Schikhof, C. Perez-Garcia, J. Kakol, Dekker, New York, 1997, 223–236 | MR | Zbl

[33] Verrill H. A., “Congruences related to modular forms”, Int. J. Number Theory, 6 (2010), 1367–1390 | DOI | MR | Zbl

[34] Zagier D. B., “Arithmetic and topology of differential equations”, Proceedings of the Seventh European Congress of Mathematics (Berlin, July 18–22, 2016), eds. V. Mehrmann, M. Skutella, European Mathematical Society, Berlin, 2018, 717–776 | DOI

[35] Zeilberger D., “Gauss's ${}_2F_1(1)$ cannot be generalized to ${}_2F_1(x)$”, J. Comput. Appl. Math., 39 (1992), 379–382 | DOI | MR | Zbl

[36] Zudilin W., Ramanujan-type formulae for $1/\pi$: a second wind?, Modular Forms and String Duality, Fields Inst. Commun., 54, Amer. Math. Soc., Providence, RI, 2008, 179–188, arXiv: 0712.1332 | MR | Zbl

[37] Zudilin W., “Ramanujan-type supercongruences”, J. Number Theory, 129 (2009), 1848–1857, arXiv: 0805.2788 | DOI | MR | Zbl