@article{SIGMA_2018_14_a84,
author = {Yann Demichel},
title = {Renormalization of the {Hutchinson} {Operator}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a84/}
}
Yann Demichel. Renormalization of the Hutchinson Operator. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a84/
[1] Barnsley M. F., Fractals everywhere, 2nd ed., Academic Press, Boston, MA, 1993 | MR | Zbl
[2] Barnsley M. F., Demko S., “Iterated function systems and the global construction of fractals”, Proc. Roy. Soc. London Ser. A, 399 (1985), 243–275 | DOI | MR | Zbl
[3] Barnsley M. F., Vince A., “The eigenvalue problem for linear and affine iterated function systems”, Linear Algebra Appl., 435 (2011), 3124–3138, arXiv: 1004.5040 | DOI | MR
[4] Barnsley M. F., Wilson D. C., Leśniak K., “Some recent progress concerning topology of fractals”, Recent Progress in General Topology. III, Atlantis Press, Paris, 2014, 69–92 | DOI | MR | Zbl
[5] Berger M. A., Wang Y., “Bounded semigroups of matrices”, Linear Algebra Appl., 166 (1992), 21–27 | DOI | MR | Zbl
[6] Beyn W.-J., Elsner L., “Infinite products and paracontracting matrices”, Electron. J. Linear Algebra, 2 (1997), 1–8 | DOI | MR | Zbl
[7] Bru R., Elsner L., Neumann M., “Convergence of infinite products of matrices and inner-outer iteration schemes”, Electron. Trans. Numer. Anal., 2 (1994), 183–193 | MR | Zbl
[8] Cox J. T., Durrett R., “Some limit theorems for percolation processes with necessary and sufficient conditions”, Ann. Probab., 9 (1981), 583–603 | DOI | MR | Zbl
[9] Daubechies I., Lagarias J. C., “Sets of matrices all infinite products of which converge”, Linear Algebra Appl., 161 (1992), 227–263 | DOI | MR | Zbl
[10] Edgar G. A., Measure, topology, and fractal geometry, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1990 | DOI | MR | Zbl
[11] Elsner L., Friedland S., “Norm conditions for convergence of infinite products”, Linear Algebra Appl., 250 (1997), 133–142 | DOI | MR | Zbl
[12] Falconer K., Fractal geometry: mathematical foundations and applications, 2nd ed., John Wiley Sons, Inc., Hoboken, NJ, 2003 | DOI | MR
[13] Fisher G., Fractal image compression: theory and applications, Springer, New York, 1995 | DOI | MR
[14] Fraser J. M., “Inhomogeneous self-similar sets and box dimensions”, Studia Math., 213 (2012), 133–156, arXiv: 1301.1881 | DOI | MR | Zbl
[15] Gentil C., Neveu M., “Mixed-aspect fractal surfaces”, Comput.-Aided Des., 45 (2013), 432–439 | DOI | MR
[16] Hartfiel D. J., Nonhomogeneous matrix products, World Scientific Publishing Co. Inc., River Edge, NJ, 2002 | DOI | MR | Zbl
[17] Hutchinson J. E., “Fractals and self-similarity”, Indiana Univ. Math. J., 30 (1981), 713–747 | DOI | MR | Zbl
[18] Le Gall J.-F., “The topological structure of scaling limits of large planar maps”, Invent. Math., 169 (2007), 621–670, arXiv: math.PR/0607567 | DOI | MR | Zbl
[19] Mandelbrot B. B., The fractal geometry of nature, W.H. Freeman and Co., San Francisco, Calif., 1982 | MR | Zbl
[20] Marckert J.-F., Mokkadem A., “Limit of normalized quadrangulations: the Brownian map”, Ann. Probab., 34 (2006), 2144–2202, arXiv: math.PR/0403398 | DOI | MR | Zbl
[21] Peres Y., Solomyak B., “Problems on self-similar sets and self-affine sets: an update”, Fractal Geometry and Stochastics, II (Greifswald/Koserow, 1998), Progr. Probab., 46, Birkhäuser, Basel, 2000, 95–106 | DOI | MR | Zbl
[22] Richardson D., “Random growth in a tessellation”, Proc. Cambridge Philos. Soc., 74 (1973), 515–528 | DOI | MR | Zbl
[23] Seneta E., Non-negative matrices and Markov chains, Springer Series in Statistics, Springer, New York, 2006 | DOI | MR | Zbl
[24] Theys J., Joint spectral radius: theory and approximations, Ph.D. Thesis, University Catholique de Louvain, 2006