@article{SIGMA_2018_14_a82,
author = {Rick K. Beatson and Wolfgang zu Castell},
title = {Thinplate {Splines} on the {Sphere}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a82/}
}
Rick K. Beatson; Wolfgang zu Castell. Thinplate Splines on the Sphere. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a82/
[1] Abramowitz M., Stegun I. A. (eds.), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1966 | MR
[2] Atteia M., Hilbertian kernels and spline functions, Studies in Computational Mathematics, 4, North-Holland Publishing Co., Amsterdam, 1992 | MR | Zbl
[3] Berlinet A., Thomas-Agnan C., Reproducing kernel Hilbert spaces in probability and statistics, Kluwer Academic Publishers, Boston, MA, 2004 | DOI | MR | Zbl
[4] Bezhaev A. Yu., Vasilenko V. A., Variational theory of splines, Springer, Boston, MA, 2001 | DOI | MR
[5] Bognár J., Indefinite inner product spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 78, Springer-Verlag, New York–Heidelberg, 1974 | DOI | MR | Zbl
[6] Chen D., Menegatto V. A., Sun X., “A necessary and sufficient condition for strictly positive definite functions on spheres”, Proc. Amer. Math. Soc., 131 (2003), 2733–2740 | DOI | MR | Zbl
[7] Cheney W., Light W., A course in approximation theory, Graduate Studies in Mathematics, 101, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl
[8] Dai F., Xu Y., Approximation theory and harmonic analysis on spheres and balls, Springer Monographs in Mathematics, Springer, New York, 2013 | DOI | MR | Zbl
[9] Davis P. J., Interpolation and approximation, Dover Publications, Inc., New York, 1975 | MR | Zbl
[10] Duchon J., “Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces”, Rev. Française Automat. Informat. Recherche Opérationnelle Sér., 10 (1976), 5–12 | MR
[11] Duchon J., “Splines minimizing rotation-invariant semi-norms in Sobolev spaces”, Constructive Theory of Functions of Several Variables, Proc. Conf. (Math. Res. Inst., Oberwolfach, 1976), Lecture Notes in Math., 571, eds. W. Schempp, K. Zeller, Springer, Berlin, 1977, 85–100 | DOI | MR
[12] Freeden W., Gervens T., Schreiner M., Constructive approximation on the sphere: with applications to geomathematics, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 1998 | MR
[13] Gneiting T., “Strictly and non-strictly positive definite functions on spheres”, Bernoulli, 19 (2013), 1327–1349, arXiv: 1111.7077 | DOI | MR | Zbl
[14] Laurent P.-J., “Inf-convolution splines”, Constr. Approx., 7 (1991), 469–484 | DOI | MR | Zbl
[15] Levesley J., Light W., Ragozin D., Sun X., “A simple approach to the variational theory for interpolation on spheres”, New Developments in Approximation Theory (Dortmund, 1998), Internat. Ser. Numer. Math., 132, Birkhäuser, Basel, 1999, 117–143 | DOI | MR | Zbl
[16] Martinez-Morales J. L., “Generalized Legendre series and the fundamental solution of the Laplacian on the $n$-sphere”, Anal. Math., 31 (2005), 131–150 | DOI | MR | Zbl
[17] Meinguet J., “Multivariate interpolation at arbitrary points made simple”, Z. Angew. Math. Phys., 30 (1979), 292–304 | DOI | MR | Zbl
[18] Menegatto V. A., Oliveira C. P., Peron A. P., “Strictly positive definite kernels on subsets of the complex plane”, Comput. Math. Appl., 51 (2006), 1233–1250 | DOI | MR | Zbl
[19] NIST digital library of mathematical functions, Release 1.0.10 of 2015-08-07, https://dlmf.nist.gov/
[20] Mosamam A. M., Kent J. T., “Semi-reproducing kernel Hilbert spaces, splines and increment kriging”, J. Nonparametr. Stat., 22 (2010), 711–722 | DOI | MR | Zbl
[21] Strauss H., “Extremal properties of conditionally positive definite functions”, Approximation Theory, X (St. Louis, MO, 2001), Innov. Appl. Math., Vanderbilt University Press, Nashville, TN, 2002, 441–452 | MR | Zbl
[22] Wahba G., “Spline interpolation and smoothing on the sphere”, SIAM J. Sci. Statist. Comput., 2 (1981), 5–16 | DOI | MR | Zbl
[23] Wahba G., “Erratum: “Spline interpolation and smoothing on the sphere””, SIAM J. Sci. Statist. Comput., 3 (1982), 385–386 | DOI | MR | Zbl
[24] Wahba G., Spline models for observational data, CBMS-NSF Regional Conference Series in Applied Mathematics, 59, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990 | MR | Zbl