Local Type I Metrics with Holonomy in $\mathrm{G}_{2}^*$
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By [arXiv:1604.00528], a list of possible holonomy algebras for pseudo-Riemannian manifolds with an indecomposable torsion free $\mathrm{G}_{2}^*$-structure is known. Here indecomposability means that the standard representation of the algebra on ${\mathbb R}^{4,3}$ does not leave invariant any proper non-degenerate subspace. The dimension of the socle of this representation is called the type of the Lie algebra. It is equal to one, two or three. In the present paper, we use Cartan's theory of exterior differential systems to show that all Lie algebras of Type I from the list in [arXiv:1604.00528] can indeed be realised as the holonomy of a local metric. All these Lie algebras are contained in the maximal parabolic subalgebra $\mathfrak p_1$ that stabilises one isotropic line of ${\mathbb R}^{4,3}$. In particular, we realise $\mathfrak p_1$ by a local metric.
Keywords: holonomy; pseudo-Riemannian manifold; exterior differential system; torsion-free $\mathrm{G}$-structures.
@article{SIGMA_2018_14_a80,
     author = {Anna Fino and Ines Kath},
     title = {Local {Type} {I} {Metrics} with {Holonomy} in $\mathrm{G}_{2}^*$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a80/}
}
TY  - JOUR
AU  - Anna Fino
AU  - Ines Kath
TI  - Local Type I Metrics with Holonomy in $\mathrm{G}_{2}^*$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a80/
LA  - en
ID  - SIGMA_2018_14_a80
ER  - 
%0 Journal Article
%A Anna Fino
%A Ines Kath
%T Local Type I Metrics with Holonomy in $\mathrm{G}_{2}^*$
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a80/
%G en
%F SIGMA_2018_14_a80
Anna Fino; Ines Kath. Local Type I Metrics with Holonomy in $\mathrm{G}_{2}^*$. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a80/

[1] Ambrose W., Singer I. M., “A theorem on holonomy”, Trans. Amer. Math. Soc., 75 (1953), 428–443 | DOI | MR | Zbl

[2] Anderson I. M., Leistner T., Nurowski P., Explicit ambient metrics and holonomy, arXiv: 1501.00852

[3] Berger M., “Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes”, Bull. Soc. Math. France, 83 (1955), 279–330 | DOI | MR | Zbl

[4] Bryant R. L., “Metrics with exceptional holonomy”, Ann. of Math., 126 (1987), 525–576 | DOI | MR | Zbl

[5] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A., Exterior differential systems, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[6] Cortés V., Leistner T., Schäfer L., Schulte-Hengesbach F., “Half-flat structures and special holonomy”, Proc. Lond. Math. Soc., 102 (2011), 113–158, arXiv: 0907.1222 | DOI | MR | Zbl

[7] Fino A., Kath I., “Holonomy groups of ${\rm G}_{2}^*$-manifolds”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1604.00528 | DOI

[8] Fino A., Luján I., “Torsion-free $G^*_{2(2)}$-structures with full holonomy on nilmanifolds”, Adv. Geom., 15 (2015), 381–392, arXiv: 1307.2710 | DOI | MR | Zbl

[9] Graham C. R., Willse T., “Parallel tractor extension and ambient metrics of holonomy split ${\rm G}_2$”, J. Differential Geom., 92 (2012), 463–505, arXiv: 1109.3504 | DOI | MR

[10] Hammerl M., Sagerschnig K., “Conformal structures associated to generic rank 2 distributions on 5-manifolds – characterization and {K}illing-field decomposition”, SIGMA, 5 (2009), 081, 29 pp., arXiv: 0908.0483 | DOI | MR | Zbl

[11] Kath I., “Indefinite symmetric spaces with $\rm G_{2(2)}$-structure”, J. Lond. Math. Soc., 87 (2013), 853–876, arXiv: 1111.1394 | DOI | MR | Zbl

[12] Leistner T., Nurowski P., “Ambient metrics with exceptional holonomy”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11 (2012), 407–436 | MR | Zbl

[13] Willse T., “Highly symmetric 2-plane fields on 5-manifolds and 5-dimensional Heisenberg group holonomy”, Differential Geom. Appl., 33, suppl. (2014), 81–111, arXiv: 1302.7163 | DOI | MR | Zbl

[14] Willse T., “Cartan's incomplete classification and an explicit ambient metric of holonomy $\rm G_2^*$”, Eur. J. Math., 4 (2018), 622–638, arXiv: 1411.7172 | DOI | MR | Zbl